Suppr超能文献

用于脑电图分析的Lp范数空间中的自回归模型。

Autoregressive model in the Lp norm space for EEG analysis.

作者信息

Li Peiyang, Wang Xurui, Li Fali, Zhang Rui, Ma Teng, Peng Yueheng, Lei Xu, Tian Yin, Guo Daqing, Liu Tiejun, Yao Dezhong, Xu Peng

机构信息

Key Laboratory for NeuroInformation of the Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China.

School of Microelectronics and Solid-State Electronics, University of Electronic Science and Technology of China, Chengdu, China.

出版信息

J Neurosci Methods. 2015 Jan 30;240:170-8. doi: 10.1016/j.jneumeth.2014.11.007. Epub 2014 Nov 18.

Abstract

The autoregressive (AR) model is widely used in electroencephalogram (EEG) analyses such as waveform fitting, spectrum estimation, and system identification. In real applications, EEGs are inevitably contaminated with unexpected outlier artifacts, and this must be overcome. However, most of the current AR models are based on the L2 norm structure, which exaggerates the outlier effect due to the square property of the L2 norm. In this paper, a novel AR object function is constructed in the Lp (p≤1) norm space with the aim to compress the outlier effects on EEG analysis, and a fast iteration procedure is developed to solve this new AR model. The quantitative evaluation using simulated EEGs with outliers proves that the proposed Lp (p≤1) AR can estimate the AR parameters more robustly than the Yule-Walker, Burg and LS methods, under various simulated outlier conditions. The actual application to the resting EEG recording with ocular artifacts also demonstrates that Lp (p≤1) AR can effectively address the outliers and recover a resting EEG power spectrum that is more consistent with its physiological basis.

摘要

自回归(AR)模型广泛应用于脑电图(EEG)分析,如波形拟合、频谱估计和系统识别。在实际应用中,脑电图不可避免地会受到意外的异常伪迹污染,必须克服这一问题。然而,目前大多数AR模型基于L2范数结构,由于L2范数的平方特性,会夸大异常值的影响。本文在Lp(p≤1)范数空间中构建了一种新颖的AR目标函数,旨在压缩异常值对脑电图分析的影响,并开发了一种快速迭代程序来求解这个新的AR模型。使用带有异常值的模拟脑电图进行的定量评估证明,在各种模拟异常值条件下,所提出的Lp(p≤1)AR模型比尤尔-沃克(Yule-Walker)、伯格(Burg)和最小二乘(LS)方法能更稳健地估计AR参数。对带有眼动伪迹的静息脑电图记录的实际应用也表明,Lp(p≤1)AR模型能够有效处理异常值,并恢复出与其生理基础更一致的静息脑电图功率谱。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验