IEEE Trans Neural Syst Rehabil Eng. 2017 Nov;25(11):1959-1969. doi: 10.1109/TNSRE.2017.2711264. Epub 2017 Jun 5.
Granger analysis (GA) is widely used to construct directed brain networks based on various physiological recordings, such as functional magnetic resonance imaging, and electroencephalogram (EEG). However, in real applications, EEGs are inevitably contaminated by unexpected artifacts that may distort the networks because of the L2 norm structure utilized in GAs when estimating directed links. Compared with the L2 norm, the Lp ( ) norm can compress outlier effects. In this paper, an extended GA is constructed by applying the Lp ( ) norm strategy to estimate robust causalities under outlier conditions, and a feasible iteration procedure is utilized to solve the new GA model. A quantitative evaluation using a predefined simulation network demonstrates smaller bias errors and higher linkage consistence for the Lp ( , 0.8, 0.6, 0.4, 0.2) -GAs compared with both the Lasso- and L2-GAs under various simulated outlier conditions. Applications in resting-state EEGs that contain ocular artifacts also show that the proposed GA can effectively compress the ocular outlier influence and recover the reliable networks. The proposed Lp-GA may be helpful in capturing the reliable network structure when EEGs are contaminated with artifacts in related studies.
格兰杰因果分析(GA)广泛应用于构建基于各种生理记录的有向脑网络,如功能磁共振成像和脑电图(EEG)。然而,在实际应用中,EEG 不可避免地会受到意外伪影的污染,这些伪影可能会由于 GA 在估计有向链路时使用 L2 范数结构而扭曲网络。与 L2 范数相比,Lp()范数可以压缩离群值的影响。在本文中,通过应用 Lp()范数策略来估计异常情况下的稳健因果关系,构建了一种扩展的 GA,并利用可行的迭代过程来解决新的 GA 模型。使用预定义的模拟网络进行定量评估表明,与 Lasso-GA 和 L2-GA 相比,在各种模拟异常情况下,Lp(,0.8,0.6,0.4,0.2)-GA 具有更小的偏差误差和更高的链接一致性。在包含眼动伪影的静息态 EEG 中的应用也表明,所提出的 GA 可以有效地压缩眼动伪影的影响并恢复可靠的网络。在相关研究中,当 EEG 受到伪影污染时,所提出的 Lp-GA 可能有助于捕获可靠的网络结构。