School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China.
Biomed Eng Online. 2013 Aug 6;12:77. doi: 10.1186/1475-925X-12-77.
Brain computer interfaces (BCI) is one of the most popular branches in biomedical engineering. It aims at constructing a communication between the disabled persons and the auxiliary equipments in order to improve the patients' life. In motor imagery (MI) based BCI, one of the popular feature extraction strategies is Common Spatial Patterns (CSP). In practical BCI situation, scalp EEG inevitably has the outlier and artifacts introduced by ocular, head motion or the loose contact of electrodes in scalp EEG recordings. Because outlier and artifacts are usually observed with large amplitude, when CSP is solved in view of L2 norm, the effect of outlier and artifacts will be exaggerated due to the imposing of square to outliers, which will finally influence the MI based BCI performance. While L1 norm will lower the outlier effects as proved in other application fields like EEG inverse problem, face recognition, etc.
In this paper, we present a new CSP implementation using the L1 norm technique, instead of the L2 norm, to solve the eigen problem for spatial filter estimation with aim to improve the robustness of CSP to outliers. To evaluate the performance of our method, we applied our method as well as the standard CSP and the regularized CSP with Tikhonov regularization (TR-CSP), on both the peer BCI dataset with simulated outliers and the dataset from the MI BCI system developed in our group. The McNemar test is used to investigate whether the difference among the three CSPs is of statistical significance.
The results of both the simulation and real BCI datasets consistently reveal that the proposed method has much higher classification accuracies than the conventional CSP and the TR-CSP.
By combining L1 norm based Eigen decomposition into Common Spatial Patterns, the proposed approach can effectively improve the robustness of BCI system to EEG outliers and thus be potential for the actual MI BCI application, where outliers are inevitably introduced into EEG recordings.
脑机接口(BCI)是生物医学工程中最热门的分支之一。它旨在构建残疾人和辅助设备之间的通信,以改善患者的生活。在基于运动想象(MI)的 BCI 中,一种流行的特征提取策略是公共空间模式(CSP)。在实际的 BCI 情况下,头皮 EEG 不可避免地会受到眼动、头部运动或头皮 EEG 记录中电极松动引起的异常值和伪影的影响。因为异常值和伪影通常具有较大的幅度,所以当 CSP 基于 L2 范数求解时,由于对异常值施加平方,异常值和伪影的影响会被夸大,这最终会影响基于 MI 的 BCI 性能。而 L1 范数将降低异常值的影响,这已在 EEG 逆问题、人脸识别等其他应用领域得到证明。
在本文中,我们提出了一种使用 L1 范数技术代替 L2 范数来解决空间滤波器估计特征问题的新 CSP 实现方法,旨在提高 CSP 对异常值的鲁棒性。为了评估我们方法的性能,我们将我们的方法以及标准 CSP 和具有 Tikhonov 正则化(TR-CSP)的正则化 CSP 应用于具有模拟异常值的同行 BCI 数据集和我们小组开发的 MI BCI 系统的数据集。采用 McNemar 检验来检验三种 CSP 之间的差异是否具有统计学意义。
模拟和真实 BCI 数据集的结果一致表明,与传统的 CSP 和 TR-CSP 相比,所提出的方法具有更高的分类准确率。
通过将基于 L1 范数的特征分解与公共空间模式相结合,所提出的方法可以有效地提高 BCI 系统对 EEG 异常值的鲁棒性,因此对于实际的 MI BCI 应用具有潜力,在实际应用中,EEG 记录中不可避免地会引入异常值。