Mingardon Florence, Clement Camille, Hirano Kathleen, Nhan Melissa, Luning Eric G, Chanal Angelique, Mukhopadhyay Aindrila
Total New Energies Inc., Emeryville, California, 94608.
Biotechnol Bioeng. 2015 May;112(5):879-88. doi: 10.1002/bit.25511. Epub 2015 Jan 20.
Microorganisms can be engineered for the production of chemicals utilized in the polymer industry. However many such target compounds inhibit microbial growth and might correspondingly limit production levels. Here, we focus on compounds that are precursors to bioplastics, specifically styrene and representative alpha-olefins; 1-hexene, 1-octene, and 1-nonene. We evaluated the role of the Escherichia coli efflux pump, AcrAB-TolC, in enhancing tolerance towards these olefin compounds. AcrAB-TolC is involved in the tolerance towards all four compounds in E. coli. Both styrene and 1-hexene are highly toxic to E. coli. Styrene is a model plastics precursor with an established route for production in E. coli (McKenna and Nielsen, 2011). Though our data indicates that AcrAB-TolC is important for its optimal production, we observed a strong negative selection against the production of styrene in E. coli. Thus we used 1-hexene as a model compound to implement a directed evolution strategy to further improve the tolerance phenotype towards this alpha-olefin. We focused on optimization of AcrB, the inner membrane domain known to be responsible for substrate binding, and found several mutations (A279T, Q584R, F617L, L822P, F927S, and F1033Y) that resulted in improved tolerance. Several of these mutations could also be combined in a synergistic manner. Our study shows efflux pumps to be an important mechanism in host engineering for olefins, and one that can be further improved using strategies such as directed evolution, to increase tolerance and potentially production.
微生物可通过基因工程改造用于生产聚合物工业中使用的化学品。然而,许多此类目标化合物会抑制微生物生长,并可能相应地限制生产水平。在此,我们聚焦于生物塑料的前体化合物,特别是苯乙烯和代表性的α-烯烃;1-己烯、1-辛烯和1-壬烯。我们评估了大肠杆菌外排泵AcrAB-TolC在增强对这些烯烃化合物耐受性方面的作用。AcrAB-TolC参与了大肠杆菌对所有这四种化合物的耐受性。苯乙烯和1-己烯对大肠杆菌都具有高毒性。苯乙烯是一种典型的塑料前体,在大肠杆菌中有既定的生产途径(麦肯纳和尼尔森,2011年)。尽管我们的数据表明AcrAB-TolC对其最佳生产很重要,但我们观察到在大肠杆菌中对苯乙烯生产存在强烈的负选择。因此,我们使用1-己烯作为模型化合物来实施定向进化策略,以进一步改善对这种α-烯烃的耐受性表型。我们专注于优化AcrB,即已知负责底物结合的内膜结构域,并发现了几个导致耐受性提高的突变(A279T、Q584R、F617L、L822P、F927S和F1033Y)。其中几个突变也可以以协同方式组合。我们的研究表明外排泵是宿主工程中对烯烃耐受性的重要机制,并且可以使用定向进化等策略进一步改进,以提高耐受性并潜在地提高产量。