Suppr超能文献

甜菜α-葡萄糖苷酶在稳定与长链底物的米氏复合物方面的结构优势。

Structural advantage of sugar beet α-glucosidase to stabilize the Michaelis complex with long-chain substrate.

作者信息

Tagami Takayoshi, Yamashita Keitaro, Okuyama Masayuki, Mori Haruhide, Yao Min, Kimura Atsuo

机构信息

From the Research Faculty of Agriculture.

Graduate School of Life Science, and.

出版信息

J Biol Chem. 2015 Jan 16;290(3):1796-803. doi: 10.1074/jbc.M114.606939. Epub 2014 Dec 1.

Abstract

The α-glucosidase from sugar beet (SBG) is an exo-type glycosidase. The enzyme has a pocket-shaped active site, but efficiently hydrolyzes longer maltooligosaccharides and soluble starch due to lower Km and higher kcat/Km for such substrates. To obtain structural insights into the mechanism governing its unique substrate specificity, a series of acarviosyl-maltooligosaccharides was employed for steady-state kinetic and structural analyses. The acarviosyl-maltooligosaccharides have a longer maltooligosaccharide moiety compared with the maltose moiety of acarbose, which is known to be the transition state analog of α-glycosidases. The clear correlation obtained between log Ki of the acarviosyl-maltooligosaccharides and log(Km/kcat) for hydrolysis of maltooligosaccharides suggests that the acarviosyl-maltooligosaccharides are transition state mimics. The crystal structure of the enzyme bound with acarviosyl-maltohexaose reveals that substrate binding at a distance from the active site is maintained largely by van der Waals interactions, with the four glucose residues at the reducing terminus of acarviosyl-maltohexaose retaining a left-handed single-helical conformation, as also observed in cycloamyloses and single helical V-amyloses. The kinetic behavior and structural features suggest that the subsite structure suitable for the stable conformation of amylose lowers the Km for long-chain substrates, which in turn is responsible for higher specificity of the longer substrates.

摘要

甜菜α-葡萄糖苷酶(SBG)是一种外切型糖苷酶。该酶具有口袋状活性位点,但由于对较长麦芽寡糖和可溶性淀粉具有较低的米氏常数(Km)和较高的催化常数与米氏常数之比(kcat/Km),因此能高效水解这些底物。为了深入了解其独特底物特异性的机制,我们使用了一系列阿巴卡糖基麦芽寡糖进行稳态动力学和结构分析。与阿卡波糖的麦芽糖部分相比,阿巴卡糖基麦芽寡糖具有更长的麦芽寡糖部分,阿卡波糖的麦芽糖部分是已知的α-糖苷酶过渡态类似物。阿巴卡糖基麦芽寡糖的对数抑制常数(log Ki)与麦芽寡糖水解的对数(Km/kcat)之间的明显相关性表明,阿巴卡糖基麦芽寡糖是过渡态模拟物。与阿巴卡糖基麦芽六糖结合的酶的晶体结构表明,与活性位点有一定距离的底物结合主要通过范德华相互作用维持,阿巴卡糖基麦芽六糖还原端的四个葡萄糖残基保持左旋单螺旋构象,这在环糊精和单螺旋V-直链淀粉中也有观察到。动力学行为和结构特征表明,适合直链淀粉稳定构象的亚位点结构降低了长链底物的Km,这反过来又导致了对较长底物的更高特异性。

相似文献

1
Structural advantage of sugar beet α-glucosidase to stabilize the Michaelis complex with long-chain substrate.
J Biol Chem. 2015 Jan 16;290(3):1796-803. doi: 10.1074/jbc.M114.606939. Epub 2014 Dec 1.
2
Molecular basis for the recognition of long-chain substrates by plant α-glucosidases.
J Biol Chem. 2013 Jun 28;288(26):19296-303. doi: 10.1074/jbc.M113.465211. Epub 2013 May 16.
4
Enzymatic synthesis of Acarviosyl-maltooligosaccharides using disproportionating enzyme 1.
Biosci Biotechnol Biochem. 2013;77(2):312-9. doi: 10.1271/bbb.120732. Epub 2013 Feb 7.
7
Mutagenesis of Ala290, which modulates substrate subsite affinity at the catalytic interface of dimeric ThMA.
Biochim Biophys Acta. 2005 Aug 10;1751(2):170-7. doi: 10.1016/j.bbapap.2005.05.004.
8
Structural analysis of the α-glucosidase HaG provides new insights into substrate specificity and catalytic mechanism.
Acta Crystallogr D Biol Crystallogr. 2015 Jun;71(Pt 6):1382-91. doi: 10.1107/S139900471500721X. Epub 2015 May 23.
9
Structural insight into substrate specificity of human intestinal maltase-glucoamylase.
Protein Cell. 2011 Oct;2(10):827-36. doi: 10.1007/s13238-011-1105-3. Epub 2011 Nov 6.

引用本文的文献

1
Development of a strategy for the screening of α-glucosidase-producing microorganisms.
J Microbiol. 2020 Feb;58(2):163-172. doi: 10.1007/s12275-020-9267-4. Epub 2020 Jan 29.
2
Synthesis of Isomaltooligosaccharides by Cells Expressing α-Glucosidase.
ACS Omega. 2017 Nov 30;2(11):8062-8068. doi: 10.1021/acsomega.7b01189. Epub 2017 Nov 16.
3
Two Novel Glycoside Hydrolases Responsible for the Catabolism of Cyclobis-(1→6)-α-nigerosyl.
J Biol Chem. 2016 Aug 5;291(32):16438-47. doi: 10.1074/jbc.M116.727305. Epub 2016 Jun 14.
4
α-Glucosidases and α-1,4-glucan lyases: structures, functions, and physiological actions.
Cell Mol Life Sci. 2016 Jul;73(14):2727-51. doi: 10.1007/s00018-016-2247-5. Epub 2016 Apr 30.

本文引用的文献

1
The carbohydrate-active enzymes database (CAZy) in 2013.
Nucleic Acids Res. 2014 Jan;42(Database issue):D490-5. doi: 10.1093/nar/gkt1178. Epub 2013 Nov 21.
2
Molecular basis for the recognition of long-chain substrates by plant α-glucosidases.
J Biol Chem. 2013 Jun 28;288(26):19296-303. doi: 10.1074/jbc.M113.465211. Epub 2013 May 16.
5
Enzymatic synthesis of Acarviosyl-maltooligosaccharides using disproportionating enzyme 1.
Biosci Biotechnol Biochem. 2013;77(2):312-9. doi: 10.1271/bbb.120732. Epub 2013 Feb 7.
6
Towards automated crystallographic structure refinement with phenix.refine.
Acta Crystallogr D Biol Crystallogr. 2012 Apr;68(Pt 4):352-67. doi: 10.1107/S0907444912001308. Epub 2012 Mar 16.
8
9
Structural insight into substrate specificity of human intestinal maltase-glucoamylase.
Protein Cell. 2011 Oct;2(10):827-36. doi: 10.1007/s13238-011-1105-3. Epub 2011 Nov 6.
10
REFMAC5 for the refinement of macromolecular crystal structures.
Acta Crystallogr D Biol Crystallogr. 2011 Apr;67(Pt 4):355-67. doi: 10.1107/S0907444911001314. Epub 2011 Mar 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验