Tagami Takayoshi, Miyano Eri, Sadahiro Juri, Okuyama Masayuki, Iwasaki Tomohito, Kimura Atsuo
From the College of Agriculture, Food and Environment Sciences, Rakuno Gakuen University, Ebetsu 069-8501 and
the Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan.
J Biol Chem. 2016 Aug 5;291(32):16438-47. doi: 10.1074/jbc.M116.727305. Epub 2016 Jun 14.
The actinobacterium Kribbella flavida NBRC 14399(T) produces cyclobis-(1→6)-α-nigerosyl (CNN), a cyclic glucotetraose with alternate α-(1→6)- and α-(1→3)-glucosidic linkages, from starch in the culture medium. We identified gene clusters associated with the production and intracellular catabolism of CNN in the K. flavida genome. One cluster encodes 6-α-glucosyltransferase and 3-α-isomaltosyltransferase, which are known to coproduce CNN from starch. The other cluster contains four genes annotated as a transcriptional regulator, sugar transporter, glycoside hydrolase family (GH) 31 protein (Kfla1895), and GH15 protein (Kfla1896). Kfla1895 hydrolyzed the α-(1→3)-glucosidic linkages of CNN and produced isomaltose via a possible linear tetrasaccharide. The initial rate of hydrolysis of CNN (11.6 s(-1)) was much higher than that of panose (0.242 s(-1)), and hydrolysis of isomaltotriose and nigerose was extremely low. Because Kfla1895 has a strong preference for the α-(1→3)-isomaltosyl moiety and effectively hydrolyzes the α-(1→3)-glucosidic linkage, it should be termed 1,3-α-isomaltosidase. Kfla1896 effectively hydrolyzed isomaltose with liberation of β-glucose, but displayed low or no activity toward CNN and the general GH15 enzyme substrates such as maltose, soluble starch, or dextran. The kcat/Km for isomaltose (4.81 ± 0.18 s(-1) mm(-1)) was 6.9- and 19-fold higher than those for panose and isomaltotriose, respectively. These results indicate that Kfla1896 is a new GH15 enzyme with high substrate specificity for isomaltose, suggesting the enzyme should be designated an isomaltose glucohydrolase. This is the first report to identify a starch-utilization pathway that proceeds via CNN.
放线菌黄褐克里贝拉菌NBRC 14399(T)可利用培养基中的淀粉产生环双-(1→6)-α-黑曲霉糖(CNN),这是一种具有交替α-(1→6)-和α-(1→3)-糖苷键的环状葡萄糖四糖。我们在黄褐克里贝拉菌基因组中鉴定出了与CNN产生及细胞内分解代谢相关的基因簇。一个基因簇编码6-α-葡萄糖基转移酶和3-α-异麦芽糖基转移酶,已知这两种酶可共同从淀粉产生CNN。另一个基因簇包含四个基因,分别注释为转录调节因子、糖转运蛋白、糖苷水解酶家族(GH)31蛋白(Kfla1895)和GH15蛋白(Kfla1896)。Kfla1895可水解CNN的α-(1→3)-糖苷键,并通过一种可能的线性四糖生成异麦芽糖。CNN的初始水解速率(11.6 s(-1))远高于潘糖(0.242 s(-1)),而异麦芽三糖和黑曲霉糖的水解程度极低。由于Kfla1895对α-(1→3)-异麦芽糖基部分有强烈偏好,并能有效水解α-(1→3)-糖苷键,因此应将其称为1,3-α-异麦芽糖苷酶。Kfla1896可有效水解异麦芽糖并释放β-葡萄糖,但对CNN以及一般的GH15酶底物(如麦芽糖、可溶性淀粉或葡聚糖)活性较低或无活性。异麦芽糖的kcat/Km(4.81 ± 0.18 s(-1) mM(-1))分别比潘糖和异麦芽三糖高6.9倍和19倍。这些结果表明,Kfla1896是一种对异麦芽糖具有高底物特异性的新型GH15酶,表明该酶应被命名为异麦芽糖葡萄糖水解酶。这是首次报道鉴定出一条通过CNN进行的淀粉利用途径。