Suppr超能文献

两种负责环双-(1→6)-α-黑曲霉糖代谢的新型糖苷水解酶。

Two Novel Glycoside Hydrolases Responsible for the Catabolism of Cyclobis-(1→6)-α-nigerosyl.

作者信息

Tagami Takayoshi, Miyano Eri, Sadahiro Juri, Okuyama Masayuki, Iwasaki Tomohito, Kimura Atsuo

机构信息

From the College of Agriculture, Food and Environment Sciences, Rakuno Gakuen University, Ebetsu 069-8501 and

the Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan.

出版信息

J Biol Chem. 2016 Aug 5;291(32):16438-47. doi: 10.1074/jbc.M116.727305. Epub 2016 Jun 14.

Abstract

The actinobacterium Kribbella flavida NBRC 14399(T) produces cyclobis-(1→6)-α-nigerosyl (CNN), a cyclic glucotetraose with alternate α-(1→6)- and α-(1→3)-glucosidic linkages, from starch in the culture medium. We identified gene clusters associated with the production and intracellular catabolism of CNN in the K. flavida genome. One cluster encodes 6-α-glucosyltransferase and 3-α-isomaltosyltransferase, which are known to coproduce CNN from starch. The other cluster contains four genes annotated as a transcriptional regulator, sugar transporter, glycoside hydrolase family (GH) 31 protein (Kfla1895), and GH15 protein (Kfla1896). Kfla1895 hydrolyzed the α-(1→3)-glucosidic linkages of CNN and produced isomaltose via a possible linear tetrasaccharide. The initial rate of hydrolysis of CNN (11.6 s(-1)) was much higher than that of panose (0.242 s(-1)), and hydrolysis of isomaltotriose and nigerose was extremely low. Because Kfla1895 has a strong preference for the α-(1→3)-isomaltosyl moiety and effectively hydrolyzes the α-(1→3)-glucosidic linkage, it should be termed 1,3-α-isomaltosidase. Kfla1896 effectively hydrolyzed isomaltose with liberation of β-glucose, but displayed low or no activity toward CNN and the general GH15 enzyme substrates such as maltose, soluble starch, or dextran. The kcat/Km for isomaltose (4.81 ± 0.18 s(-1) mm(-1)) was 6.9- and 19-fold higher than those for panose and isomaltotriose, respectively. These results indicate that Kfla1896 is a new GH15 enzyme with high substrate specificity for isomaltose, suggesting the enzyme should be designated an isomaltose glucohydrolase. This is the first report to identify a starch-utilization pathway that proceeds via CNN.

摘要

放线菌黄褐克里贝拉菌NBRC 14399(T)可利用培养基中的淀粉产生环双-(1→6)-α-黑曲霉糖(CNN),这是一种具有交替α-(1→6)-和α-(1→3)-糖苷键的环状葡萄糖四糖。我们在黄褐克里贝拉菌基因组中鉴定出了与CNN产生及细胞内分解代谢相关的基因簇。一个基因簇编码6-α-葡萄糖基转移酶和3-α-异麦芽糖基转移酶,已知这两种酶可共同从淀粉产生CNN。另一个基因簇包含四个基因,分别注释为转录调节因子、糖转运蛋白、糖苷水解酶家族(GH)31蛋白(Kfla1895)和GH15蛋白(Kfla1896)。Kfla1895可水解CNN的α-(1→3)-糖苷键,并通过一种可能的线性四糖生成异麦芽糖。CNN的初始水解速率(11.6 s(-1))远高于潘糖(0.242 s(-1)),而异麦芽三糖和黑曲霉糖的水解程度极低。由于Kfla1895对α-(1→3)-异麦芽糖基部分有强烈偏好,并能有效水解α-(1→3)-糖苷键,因此应将其称为1,3-α-异麦芽糖苷酶。Kfla1896可有效水解异麦芽糖并释放β-葡萄糖,但对CNN以及一般的GH15酶底物(如麦芽糖、可溶性淀粉或葡聚糖)活性较低或无活性。异麦芽糖的kcat/Km(4.81 ± 0.18 s(-1) mM(-1))分别比潘糖和异麦芽三糖高6.9倍和19倍。这些结果表明,Kfla1896是一种对异麦芽糖具有高底物特异性的新型GH15酶,表明该酶应被命名为异麦芽糖葡萄糖水解酶。这是首次报道鉴定出一条通过CNN进行的淀粉利用途径。

相似文献

1
Two Novel Glycoside Hydrolases Responsible for the Catabolism of Cyclobis-(1→6)-α-nigerosyl.
J Biol Chem. 2016 Aug 5;291(32):16438-47. doi: 10.1074/jbc.M116.727305. Epub 2016 Jun 14.
2
Structural elements responsible for the glucosidic linkage-selectivity of a glycoside hydrolase family 13 exo-glucosidase.
FEBS Lett. 2015 Mar 24;589(7):865-9. doi: 10.1016/j.febslet.2015.02.023. Epub 2015 Feb 26.
3
Structural insights into α-(1→6)-linkage preference of GH97 glucodextranase from Flavobacterium johnsoniae.
FEBS J. 2024 Jul;291(14):3267-3282. doi: 10.1111/febs.17139. Epub 2024 Apr 25.
4
Conversion of neopullulanase-alpha-amylase from Thermoactinomyces vulgaris R-47 into an amylopullulanse-type enzyme.
J Biochem. 1998 Feb;123(2):275-82. doi: 10.1093/oxfordjournals.jbchem.a021933.
5
An Extracellular Cell-Attached Pullulanase Confers Branched α-Glucan Utilization in Human Gut Lactobacillus acidophilus.
Appl Environ Microbiol. 2017 May 31;83(12). doi: 10.1128/AEM.00402-17. Print 2017 Jun 15.
6
The hydrolytic and transferase action of alternanase on oligosaccharides.
Carbohydr Res. 2001 Jun 15;332(4):373-9. doi: 10.1016/s0008-6215(01)00106-9.
7
Structural insights reveal the second base catalyst of isomaltose glucohydrolase.
FEBS J. 2022 Feb;289(4):1118-1134. doi: 10.1111/febs.16237. Epub 2021 Oct 30.
8
A glycoside hydrolase family 31 dextranase with high transglucosylation activity from Flavobacterium johnsoniae.
Biosci Biotechnol Biochem. 2016 Aug;80(8):1562-7. doi: 10.1080/09168451.2016.1182852. Epub 2016 May 12.
9
Pattern of action of Bacillus stearothermophilus neopullulanase on pullulan.
J Bacteriol. 1989 Jan;171(1):369-74. doi: 10.1128/jb.171.1.369-374.1989.

引用本文的文献

1
Structural basis of the strict specificity of a bacterial GH31 α-1,3-glucosidase for nigerooligosaccharides.
J Biol Chem. 2022 May;298(5):101827. doi: 10.1016/j.jbc.2022.101827. Epub 2022 Mar 12.
2
Structural features of a bacterial cyclic α-maltosyl-(1→6)-maltose (CMM) hydrolase critical for CMM recognition and hydrolysis.
J Biol Chem. 2018 Oct 26;293(43):16874-16888. doi: 10.1074/jbc.RA118.004472. Epub 2018 Sep 4.

本文引用的文献

1
Identification of GH15 Family Thermophilic Archaeal Trehalases That Function within a Narrow Acidic-pH Range.
Appl Environ Microbiol. 2015 Aug;81(15):4920-31. doi: 10.1128/AEM.00956-15. Epub 2015 May 15.
3
The EMBL-EBI bioinformatics web and programmatic tools framework.
Nucleic Acids Res. 2015 Jul 1;43(W1):W580-4. doi: 10.1093/nar/gkv279. Epub 2015 Apr 6.
4
Structural advantage of sugar beet α-glucosidase to stabilize the Michaelis complex with long-chain substrate.
J Biol Chem. 2015 Jan 16;290(3):1796-803. doi: 10.1074/jbc.M114.606939. Epub 2014 Dec 1.
5
Deciphering key features in protein structures with the new ENDscript server.
Nucleic Acids Res. 2014 Jul;42(Web Server issue):W320-4. doi: 10.1093/nar/gku316. Epub 2014 Apr 21.
6
The carbohydrate-active enzymes database (CAZy) in 2013.
Nucleic Acids Res. 2014 Jan;42(Database issue):D490-5. doi: 10.1093/nar/gkt1178. Epub 2013 Nov 21.
7
Functional diversification of ROK-family transcriptional regulators of sugar catabolism in the Thermotogae phylum.
Nucleic Acids Res. 2013 Jan;41(2):790-803. doi: 10.1093/nar/gks1184. Epub 2012 Dec 2.
8
SignalP 4.0: discriminating signal peptides from transmembrane regions.
Nat Methods. 2011 Sep 29;8(10):785-6. doi: 10.1038/nmeth.1701.
9
Complete genome sequence of Kribbella flavida type strain (IFO 14399).
Stand Genomic Sci. 2010 Mar 30;2(2):186-93. doi: 10.4056/sigs.731321.
10
Glucoamylases: structural and biotechnological aspects.
Appl Microbiol Biotechnol. 2011 Mar;89(5):1267-73. doi: 10.1007/s00253-010-3034-0. Epub 2010 Dec 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验