Suppr超能文献

螺旋间相互作用和受体磷酸化调节不同人类β1 - 肾上腺素能受体变体的激活动力学。

Interhelical interaction and receptor phosphorylation regulate the activation kinetics of different human β1-adrenoceptor variants.

作者信息

Ahles Andrea, Rodewald Fabian, Rochais Francesca, Bünemann Moritz, Engelhardt Stefan

机构信息

From the Institute of Pharmacology and Toxicology, Technische Universität München, 80802 Munich, Germany.

the Rudolf Virchow Center for Experimental Biomedicine, Universität Würzburg, 97080 Würzburg, Germany.

出版信息

J Biol Chem. 2015 Jan 16;290(3):1760-9. doi: 10.1074/jbc.M114.607333. Epub 2014 Dec 1.

Abstract

G protein-coupled receptors represent the largest class of drug targets, but genetic variation within G protein-coupled receptors leads to variable drug responses and, thereby, compromises their therapeutic application. One of the most intensely studied examples is a hyperfunctional variant of the human β1-adrenoceptor that carries an arginine at position 389 in helix 8 (Arg-389-ADRB1). However, the mechanism underlying the higher efficacy of the Arg-389 variant remained unclear to date. Despite its hyperfunctionality, we found the Arg-389 variant of ADRB1 to be hyperphosphorylated upon continuous stimulation with norepinephrine compared with the Gly-389 variant. Using ADRB1 sensors to monitor activation kinetics by fluorescence resonance energy transfer, Arg-389-ADRB1 exerted faster activation speed and arrestin recruitment than the Gly-389 variant. Both activation speed and arrestin recruitment depended on phosphorylation of the receptor, as shown by knockdown of G protein-coupled receptor kinases and phosphorylation-deficient ADRB1 mutants. Structural modeling of the human β1-adrenoceptor suggested interaction of the side chain of Arg-389 with opposing amino acid residues in helix 1. Site-directed mutagenesis of Lys-85 and Thr-86 in helix 1 revealed that this interaction indeed determined ADRB1 activation kinetics. Taken together, these findings indicate that differences in interhelical interaction regulate the different activation speed and efficacy of ADRB1 variants.

摘要

G蛋白偶联受体是最大的一类药物靶点,但G蛋白偶联受体内的基因变异会导致药物反应的差异,从而影响其治疗应用。研究最深入的例子之一是人类β1肾上腺素能受体的一个功能增强型变体,其第8螺旋的389位携带精氨酸(Arg-389-ADRB1)。然而,Arg-389变体更高疗效的潜在机制迄今仍不清楚。尽管具有功能增强性,但我们发现,与Gly-389变体相比,用去甲肾上腺素持续刺激时,ADRB1的Arg-389变体发生了过度磷酸化。使用ADRB1传感器通过荧光共振能量转移监测激活动力学,Arg-389-ADRB1比Gly-389变体具有更快的激活速度和抑制蛋白募集能力。如通过G蛋白偶联受体激酶的敲低和磷酸化缺陷型ADRB1突变体所示,激活速度和抑制蛋白募集均依赖于受体的磷酸化。人类β1肾上腺素能受体的结构建模表明,Arg-389的侧链与第1螺旋中相对的氨基酸残基相互作用。对第1螺旋中的Lys-85和Thr-86进行定点诱变表明,这种相互作用确实决定了ADRB1的激活动力学。综上所述,这些发现表明螺旋间相互作用的差异调节了ADRB1变体不同的激活速度和效力。

相似文献

2
Two serines in the distal C-terminus of the human ß1-adrenoceptor determine ß-arrestin2 recruitment.
PLoS One. 2017 May 4;12(5):e0176450. doi: 10.1371/journal.pone.0176450. eCollection 2017.
3
Membrane Potential Controls the Efficacy of Catecholamine-induced β1-Adrenoceptor Activity.
J Biol Chem. 2015 Nov 6;290(45):27311-27320. doi: 10.1074/jbc.M115.665000. Epub 2015 Sep 25.
5
Detection of G protein-selective G protein-coupled receptor (GPCR) conformations in live cells.
J Biol Chem. 2013 Jun 14;288(24):17167-78. doi: 10.1074/jbc.M113.464065. Epub 2013 Apr 29.
6
Functional analysis of guinea pig β1-adrenoceptor.
J Recept Signal Transduct Res. 2011 Dec;31(6):395-401. doi: 10.3109/10799893.2011.610109. Epub 2011 Oct 1.
7
Heterologous phosphorylation-induced formation of a stability lock permits regulation of inactive receptors by β-arrestins.
J Biol Chem. 2018 Jan 19;293(3):876-892. doi: 10.1074/jbc.M117.813139. Epub 2017 Nov 16.
8
Receptor sequestration in response to β-arrestin-2 phosphorylation by ERK1/2 governs steady-state levels of GPCR cell-surface expression.
Proc Natl Acad Sci U S A. 2015 Sep 15;112(37):E5160-8. doi: 10.1073/pnas.1508836112. Epub 2015 Aug 31.

引用本文的文献

2
Genetic Variants of Adrenoceptors.
Handb Exp Pharmacol. 2024;285:27-54. doi: 10.1007/164_2023_676.
5
Two serines in the distal C-terminus of the human ß1-adrenoceptor determine ß-arrestin2 recruitment.
PLoS One. 2017 May 4;12(5):e0176450. doi: 10.1371/journal.pone.0176450. eCollection 2017.
6
Optical probes based on G protein-coupled receptors - added work or added value?
Br J Pharmacol. 2016 Jan;173(2):255-66. doi: 10.1111/bph.13382. Epub 2015 Dec 19.
7
Membrane Potential Controls the Efficacy of Catecholamine-induced β1-Adrenoceptor Activity.
J Biol Chem. 2015 Nov 6;290(45):27311-27320. doi: 10.1074/jbc.M115.665000. Epub 2015 Sep 25.

本文引用的文献

1
Polymorphic variants of adrenoceptors: pharmacology, physiology, and role in disease.
Pharmacol Rev. 2014 Jul;66(3):598-637. doi: 10.1124/pr.113.008219.
2
β-arrestin1-biased β1-adrenergic receptor signaling regulates microRNA processing.
Circ Res. 2014 Feb 28;114(5):833-44. doi: 10.1161/CIRCRESAHA.114.302766. Epub 2013 Dec 13.
3
S49G and R389G polymorphisms of the β₁-adrenergic receptor influence signaling via the cAMP-PKA and ERK pathways.
Physiol Genomics. 2013 Dec 1;45(23):1186-92. doi: 10.1152/physiolgenomics.00087.2013. Epub 2013 Oct 22.
4
Adrenaline-activated structure of β2-adrenoceptor stabilized by an engineered nanobody.
Nature. 2013 Oct 24;502(7472):575-579. doi: 10.1038/nature12572. Epub 2013 Sep 22.
5
Adrenergic nervous system in heart failure: pathophysiology and therapy.
Circ Res. 2013 Aug 30;113(6):739-53. doi: 10.1161/CIRCRESAHA.113.300308.
6
The dynamic process of β(2)-adrenergic receptor activation.
Cell. 2013 Jan 31;152(3):532-42. doi: 10.1016/j.cell.2013.01.008.
7
New concepts in pharmacological efficacy at 7TM receptors: IUPHAR review 2.
Br J Pharmacol. 2013 Feb;168(3):554-75. doi: 10.1111/j.1476-5381.2012.02223.x.
10
Activation mechanism of the β2-adrenergic receptor.
Proc Natl Acad Sci U S A. 2011 Nov 15;108(46):18684-9. doi: 10.1073/pnas.1110499108. Epub 2011 Oct 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验