From the Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest H-1094, Hungary.
the MTA-SE Laboratory of Molecular Physiology, Hungarian Academy of Sciences and Semmelweis University, Budapest H-1094, Hungary, and.
J Biol Chem. 2018 Jan 19;293(3):876-892. doi: 10.1074/jbc.M117.813139. Epub 2017 Nov 16.
β-Arrestins are key regulators and signal transducers of G protein-coupled receptors (GPCRs). The interaction between receptors and β-arrestins is generally believed to require both receptor activity and phosphorylation by GPCR kinases. In this study, we investigated whether β-arrestins are able to bind second messenger kinase-phosphorylated, but inactive receptors as well. Because heterologous phosphorylation is a common phenomenon among GPCRs, this mode of β-arrestin activation may represent a novel mechanism of signal transduction and receptor cross-talk. Here we demonstrate that activation of protein kinase C (PKC) by phorbol myristate acetate, G-coupled GPCR, or epidermal growth factor receptor stimulation promotes β-arrestin2 recruitment to unliganded AT angiotensin receptor (ATR). We found that this interaction depends on the stability lock, a structure responsible for the sustained binding between GPCRs and β-arrestins, formed by phosphorylated serine-threonine clusters in the receptor's C terminus and two conserved phosphate-binding lysines in the β-arrestin2 N-domain. Using improved FlAsH-based serine-threonine clusters β-arrestin2 conformational biosensors, we also show that the stability lock not only stabilizes the receptor-β-arrestin interaction, but also governs the structural rearrangements within β-arrestins. Furthermore, we found that β-arrestin2 binds to PKC-phosphorylated ATR in a distinct active conformation, which triggers MAPK recruitment and receptor internalization. Our results provide new insights into the activation of β-arrestins and reveal their novel role in receptor cross-talk.
β-arrestins 是 G 蛋白偶联受体 (GPCR) 的关键调节因子和信号转导蛋白。通常认为,受体与 β-arrestins 的相互作用既需要受体活性,也需要 GPCR 激酶的磷酸化。在这项研究中,我们研究了 β-arrestins 是否能够与第二信使激酶磷酸化但无活性的受体结合。由于异源磷酸化是 GPCR 中的常见现象,这种 β-arrestin 激活方式可能代表了一种新的信号转导和受体串扰机制。我们在此证明,佛波醇十四烷酸酯、G 偶联 GPCR 或表皮生长因子受体刺激激活蛋白激酶 C (PKC) 可促进 β-arrestin2 募集到未配体的血管紧张素受体 (ATR)。我们发现这种相互作用依赖于稳定锁,这是一种由受体 C 末端磷酸化丝氨酸-苏氨酸簇和 β-arrestin2 N 结构域中的两个保守磷酸结合赖氨酸形成的结构,负责 GPCR 和 β-arrestin 之间的持续结合。使用改进的 FlAsH 基于丝氨酸-苏氨酸簇的 β-arrestin2 构象生物传感器,我们还表明稳定锁不仅稳定了受体-β-arrestin 相互作用,而且控制了 β-arrestin 内的结构重排。此外,我们发现 β-arrestin2 以独特的活性构象与 PKC 磷酸化的 ATR 结合,从而触发 MAPK 募集和受体内化。我们的结果为 β-arrestin 的激活提供了新的见解,并揭示了它们在受体串扰中的新作用。