Suppr超能文献

异源磷酸化诱导形成稳定锁,允许β-arrestins 调节无活性受体。

Heterologous phosphorylation-induced formation of a stability lock permits regulation of inactive receptors by β-arrestins.

机构信息

From the Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest H-1094, Hungary.

the MTA-SE Laboratory of Molecular Physiology, Hungarian Academy of Sciences and Semmelweis University, Budapest H-1094, Hungary, and.

出版信息

J Biol Chem. 2018 Jan 19;293(3):876-892. doi: 10.1074/jbc.M117.813139. Epub 2017 Nov 16.

Abstract

β-Arrestins are key regulators and signal transducers of G protein-coupled receptors (GPCRs). The interaction between receptors and β-arrestins is generally believed to require both receptor activity and phosphorylation by GPCR kinases. In this study, we investigated whether β-arrestins are able to bind second messenger kinase-phosphorylated, but inactive receptors as well. Because heterologous phosphorylation is a common phenomenon among GPCRs, this mode of β-arrestin activation may represent a novel mechanism of signal transduction and receptor cross-talk. Here we demonstrate that activation of protein kinase C (PKC) by phorbol myristate acetate, G-coupled GPCR, or epidermal growth factor receptor stimulation promotes β-arrestin2 recruitment to unliganded AT angiotensin receptor (ATR). We found that this interaction depends on the stability lock, a structure responsible for the sustained binding between GPCRs and β-arrestins, formed by phosphorylated serine-threonine clusters in the receptor's C terminus and two conserved phosphate-binding lysines in the β-arrestin2 N-domain. Using improved FlAsH-based serine-threonine clusters β-arrestin2 conformational biosensors, we also show that the stability lock not only stabilizes the receptor-β-arrestin interaction, but also governs the structural rearrangements within β-arrestins. Furthermore, we found that β-arrestin2 binds to PKC-phosphorylated ATR in a distinct active conformation, which triggers MAPK recruitment and receptor internalization. Our results provide new insights into the activation of β-arrestins and reveal their novel role in receptor cross-talk.

摘要

β-arrestins 是 G 蛋白偶联受体 (GPCR) 的关键调节因子和信号转导蛋白。通常认为,受体与 β-arrestins 的相互作用既需要受体活性,也需要 GPCR 激酶的磷酸化。在这项研究中,我们研究了 β-arrestins 是否能够与第二信使激酶磷酸化但无活性的受体结合。由于异源磷酸化是 GPCR 中的常见现象,这种 β-arrestin 激活方式可能代表了一种新的信号转导和受体串扰机制。我们在此证明,佛波醇十四烷酸酯、G 偶联 GPCR 或表皮生长因子受体刺激激活蛋白激酶 C (PKC) 可促进 β-arrestin2 募集到未配体的血管紧张素受体 (ATR)。我们发现这种相互作用依赖于稳定锁,这是一种由受体 C 末端磷酸化丝氨酸-苏氨酸簇和 β-arrestin2 N 结构域中的两个保守磷酸结合赖氨酸形成的结构,负责 GPCR 和 β-arrestin 之间的持续结合。使用改进的 FlAsH 基于丝氨酸-苏氨酸簇的 β-arrestin2 构象生物传感器,我们还表明稳定锁不仅稳定了受体-β-arrestin 相互作用,而且控制了 β-arrestin 内的结构重排。此外,我们发现 β-arrestin2 以独特的活性构象与 PKC 磷酸化的 ATR 结合,从而触发 MAPK 募集和受体内化。我们的结果为 β-arrestin 的激活提供了新的见解,并揭示了它们在受体串扰中的新作用。

相似文献

1
Heterologous phosphorylation-induced formation of a stability lock permits regulation of inactive receptors by β-arrestins.
J Biol Chem. 2018 Jan 19;293(3):876-892. doi: 10.1074/jbc.M117.813139. Epub 2017 Nov 16.
2
Angiotensin II type 1 receptor variants alter endosomal receptor-β-arrestin complex stability and MAPK activation.
J Biol Chem. 2020 Sep 18;295(38):13169-13180. doi: 10.1074/jbc.RA120.014330. Epub 2020 Jul 23.
3
Receptor sequestration in response to β-arrestin-2 phosphorylation by ERK1/2 governs steady-state levels of GPCR cell-surface expression.
Proc Natl Acad Sci U S A. 2015 Sep 15;112(37):E5160-8. doi: 10.1073/pnas.1508836112. Epub 2015 Aug 31.
4
Differential regulation of endosomal GPCR/β-arrestin complexes and trafficking by MAPK.
J Biol Chem. 2014 Aug 22;289(34):23302-17. doi: 10.1074/jbc.M114.568147. Epub 2014 Jul 11.
7
β-Arrestin biosensors reveal a rapid, receptor-dependent activation/deactivation cycle.
Nature. 2016 Mar 31;531(7596):661-4. doi: 10.1038/nature17198. Epub 2016 Mar 23.
8
The conformational signature of β-arrestin2 predicts its trafficking and signalling functions.
Nature. 2016 Mar 31;531(7596):665-8. doi: 10.1038/nature17154. Epub 2016 Mar 23.

引用本文的文献

2
Functional consequences of spatial, temporal and ligand bias of G protein-coupled receptors.
Nat Rev Nephrol. 2024 Nov;20(11):722-741. doi: 10.1038/s41581-024-00869-3. Epub 2024 Jul 22.
5
Interactions between β-arrestin proteins and the cytoskeletal system, and their relevance to neurodegenerative disorders.
Front Endocrinol (Lausanne). 2023 Feb 9;14:957981. doi: 10.3389/fendo.2023.957981. eCollection 2023.
7
Emerging structural insights into GPCR-β-arrestin interaction and functional outcomes.
Curr Opin Struct Biol. 2022 Aug;75:102406. doi: 10.1016/j.sbi.2022.102406. Epub 2022 Jun 20.
8
Aldosterone breakthrough from a pharmacological perspective.
Hypertens Res. 2022 Jun;45(6):967-975. doi: 10.1038/s41440-022-00913-4. Epub 2022 Apr 14.
9
Protein kinase sensors: an overview of new designs for visualizing kinase dynamics in single plant cells.
Plant Physiol. 2021 Oct 5;187(2):527-536. doi: 10.1093/plphys/kiab277.

本文引用的文献

1
Identification of Phosphorylation Codes for Arrestin Recruitment by G Protein-Coupled Receptors.
Cell. 2017 Jul 27;170(3):457-469.e13. doi: 10.1016/j.cell.2017.07.002.
2
Core engagement with β-arrestin is dispensable for agonist-induced vasopressin receptor endocytosis and ERK activation.
Mol Biol Cell. 2017 Apr 15;28(8):1003-1010. doi: 10.1091/mbc.E16-12-0818. Epub 2017 Feb 22.
3
Distinct conformations of GPCR-β-arrestin complexes mediate desensitization, signaling, and endocytosis.
Proc Natl Acad Sci U S A. 2017 Mar 7;114(10):2562-2567. doi: 10.1073/pnas.1701529114. Epub 2017 Feb 21.
5
Angiotensin type 1A receptor regulates β-arrestin binding of the β-adrenergic receptor via heterodimerization.
Mol Cell Endocrinol. 2017 Feb 15;442:113-124. doi: 10.1016/j.mce.2016.11.027. Epub 2016 Nov 28.
6
Functional competence of a partially engaged GPCR-β-arrestin complex.
Nat Commun. 2016 Nov 9;7:13416. doi: 10.1038/ncomms13416.
7
GPCR-G Protein-β-Arrestin Super-Complex Mediates Sustained G Protein Signaling.
Cell. 2016 Aug 11;166(4):907-919. doi: 10.1016/j.cell.2016.07.004. Epub 2016 Aug 4.
9
β-Arrestin biosensors reveal a rapid, receptor-dependent activation/deactivation cycle.
Nature. 2016 Mar 31;531(7596):661-4. doi: 10.1038/nature17198. Epub 2016 Mar 23.
10
The conformational signature of β-arrestin2 predicts its trafficking and signalling functions.
Nature. 2016 Mar 31;531(7596):665-8. doi: 10.1038/nature17154. Epub 2016 Mar 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验