Leonard Stephen S, Cohen Guy M, Kenyon Allison J, Schwegler-Berry Diane, Fix Natalie R, Bangsaruntip Sarunya, Roberts Jenny R
National Institute for Occupational Safety and Health, Pathology and Physiology Research Branch, Morgantown, WV, USA.
IBM T.J. Watson Research Center, Yorktown Heights, NY, USA.
Environ Health Insights. 2014 Nov 9;8(Suppl 1):21-9. doi: 10.4137/EHI.S15261. eCollection 2014.
Processing and synthesis of purified nanomaterials of diverse composition, size, and properties is an evolving process. Studies have demonstrated that some nanomaterials have potential toxic effects and have led to toxicity research focusing on nanotoxicology. About two million workers will be employed in the field of nanotechnology over the next 10 years. The unknown effects of nanomaterials create a need for research and development of techniques to identify possible toxicity. Through a cooperative effort between National Institute for Occupational Safety and Health and IBM to address possible occupational exposures, silicon-based nanowires (SiNWs) were obtained for our study. These SiNWs are anisotropic filamentary crystals of silicon, synthesized by the vapor-liquid-solid method and used in bio-sensors, gas sensors, and field effect transistors. Reactive oxygen species (ROS) can be generated when organisms are exposed to a material causing cellular responses, such as lipid peroxidation, H2O2 production, and DNA damage. SiNWs were assessed using three different in vitro environments (H2O2, RAW 264.7 cells, and rat alveolar macrophages) for ROS generation and possible toxicity identification. We used electron spin resonance, analysis of lipid peroxidation, measurement of H2O2 production, and the comet assay to assess generation of ROS from SiNW and define possible mechanisms. Our results demonstrate that SiNWs do not appear to be significant generators of free radicals.
加工和合成具有不同组成、尺寸和性质的纯化纳米材料是一个不断发展的过程。研究表明,一些纳米材料具有潜在的毒性作用,这导致了专注于纳米毒理学的毒性研究。在未来10年里,纳米技术领域将雇佣约200万工人。纳米材料的未知影响使得有必要研发用于识别可能毒性的技术。通过美国国家职业安全与健康研究所和国际商业机器公司之间的合作努力,以应对可能的职业暴露,我们获得了用于研究的硅基纳米线(SiNWs)。这些硅基纳米线是硅的各向异性丝状晶体,通过气液固方法合成,用于生物传感器、气体传感器和场效应晶体管。当生物体暴露于导致细胞反应(如脂质过氧化、过氧化氢产生和DNA损伤)的材料时,会产生活性氧(ROS)。使用三种不同的体外环境(过氧化氢、RAW 264.7细胞和大鼠肺泡巨噬细胞)对硅基纳米线进行评估,以确定活性氧的产生情况和可能的毒性。我们使用电子自旋共振、脂质过氧化分析、过氧化氢产生量的测量以及彗星试验来评估硅基纳米线产生的活性氧,并确定可能的机制。我们的结果表明,硅基纳米线似乎不是自由基的重要产生源。