Suppr超能文献

肌动蛋白丝在体外对抗负载棘轮运动时的能量转换。

Power transduction of actin filaments ratcheting in vitro against a load.

作者信息

Démoulin Damien, Carlier Marie-France, Bibette Jérôme, Baudry Jean

机构信息

Laboratoire Colloïdes et Matériaux Divisés, Institute of Chemistry, Biology and Innovation (CBI), ESPCI ParisTech/CNRS UMR 8231/PSL* Research University, 75005 Paris, France; and

Laboratoire d'Enzymologie et Biologie Structurales, CNRS UPR 3082, 91190 Gif-sur-Yvette, France.

出版信息

Proc Natl Acad Sci U S A. 2014 Dec 16;111(50):17845-50. doi: 10.1073/pnas.1414184111. Epub 2014 Dec 1.

Abstract

The actin cytoskeleton has the unique capability of producing pushing forces at the leading edge of motile cells without the implication of molecular motors. This phenomenon has been extensively studied theoretically, and molecular models, including the widely known Brownian ratchet, have been proposed. However, supporting experimental work is lacking, due in part to hardly accessible molecular length scales. We designed an experiment to directly probe the mechanism of force generation in a setup where a population of actin filaments grows against a load applied by magnetic microparticles. The filaments, arranged in stiff bundles by fascin, are constrained to point toward the applied load. In this protrusion-like geometry, we are able to directly measure the velocity of filament elongation and its dependence on force. Using numerical simulations, we provide evidence that our experimental data are consistent with a Brownian ratchet-based model. We further demonstrate the existence of a force regime far below stalling where the mechanical power transduced by the ratcheting filaments to the load is maximal. The actin machinery in migrating cells may tune the number of filaments at the leading edge to work in this force regime.

摘要

肌动蛋白细胞骨架具有在运动细胞前沿产生推力的独特能力,而无需分子马达的参与。这种现象已在理论上得到广泛研究,并提出了包括广为人知的布朗棘轮在内的分子模型。然而,由于分子长度尺度难以获取,缺乏支持性的实验工作。我们设计了一个实验,在一个装置中直接探究力产生的机制,在该装置中,一群肌动蛋白丝逆着磁性微粒施加的负载生长。由肌动蛋白结合蛋白排列成刚性束的丝被限制指向施加的负载。在这种类似突出的几何结构中,我们能够直接测量丝伸长的速度及其对力的依赖性。通过数值模拟,我们提供证据表明我们的实验数据与基于布朗棘轮的模型一致。我们进一步证明,在远低于失速的力区域存在一种情况,即通过棘轮丝传递到负载的机械功率最大。迁移细胞中的肌动蛋白机制可能会调节前沿丝的数量,以便在这种力区域发挥作用。

相似文献

1
Power transduction of actin filaments ratcheting in vitro against a load.肌动蛋白丝在体外对抗负载棘轮运动时的能量转换。
Proc Natl Acad Sci U S A. 2014 Dec 16;111(50):17845-50. doi: 10.1073/pnas.1414184111. Epub 2014 Dec 1.
5
Growth of attached actin filaments.附着肌动蛋白丝的生长。
Eur Phys J E Soft Matter. 2006 Nov;21(3):209-222. doi: 10.1140/epje/i2006-10061-9.

引用本文的文献

8
Amplification of actin polymerization forces.肌动蛋白聚合力的放大
J Cell Biol. 2016 Mar 28;212(7):763-6. doi: 10.1083/jcb.201512019. Epub 2016 Mar 21.
9
Emergence of an Apical Epithelial Cell Surface In Vivo.体内顶端上皮细胞表面的出现。
Dev Cell. 2016 Jan 11;36(1):24-35. doi: 10.1016/j.devcel.2015.12.013.

本文引用的文献

3
Mechanical forces and feedbacks in cell motility.细胞运动中的力学力和反馈。
Curr Opin Cell Biol. 2013 Oct;25(5):550-7. doi: 10.1016/j.ceb.2013.06.009. Epub 2013 Jul 13.
4
Impact of branching on the elasticity of actin networks.分枝对肌动蛋白网络弹性的影响。
Proc Natl Acad Sci U S A. 2012 Jun 26;109(26):10364-9. doi: 10.1073/pnas.1121238109. Epub 2012 Jun 11.
5
Force-velocity measurements of a few growing actin filaments.几条生长肌动蛋白丝的力-速度测量。
PLoS Biol. 2011 Apr;9(4):e1000613. doi: 10.1371/journal.pbio.1000613. Epub 2011 Apr 26.
7
Simulation of cell motility that reproduces the force-velocity relationship.模拟细胞运动,再现力-速度关系。
Proc Natl Acad Sci U S A. 2010 May 18;107(20):9141-6. doi: 10.1073/pnas.1002538107. Epub 2010 May 3.
9
Measuring colloidal forces with the magnetic chaining technique.用磁链技术测量胶体力。
Eur Phys J E Soft Matter. 2009 Feb;28(2):113-23. doi: 10.1140/epje/i2008-10414-4.
10
Force amplification response of actin filaments under confined compression.肌动蛋白丝在受限压缩下的力放大响应。
Proc Natl Acad Sci U S A. 2009 Jan 13;106(2):445-9. doi: 10.1073/pnas.0812064106. Epub 2009 Jan 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验