Suppr超能文献

利用三次谐波产生显微镜对施万细胞髓鞘形成进行无标记成像。

Label-free imaging of Schwann cell myelination by third harmonic generation microscopy.

作者信息

Lim Hyungsik, Sharoukhov Denis, Kassim Imran, Zhang Yanqing, Salzer James L, Melendez-Vasquez Carmen V

机构信息

Departments of Physics and

Departments of Physics and.

出版信息

Proc Natl Acad Sci U S A. 2014 Dec 16;111(50):18025-30. doi: 10.1073/pnas.1417820111. Epub 2014 Dec 1.

Abstract

Understanding the dynamic axon-glial cell interaction underlying myelination is hampered by the lack of suitable imaging techniques. Here we demonstrate third harmonic generation microscopy (THGM) for label-free imaging of myelinating Schwann cells in live culture and ex vivo and in vivo tissue. A 3D structure was acquired for a variety of compact and noncompact myelin domains, including juxtaparanodes, Schmidt-Lanterman incisures, and Cajal bands. Other subcellular features of Schwann cells that escape traditional optical microscopies were also visualized. We tested THGM for morphometry of compact myelin. Unlike current methods based on electron microscopy, g-ratio could be determined along an extended length of myelinated fiber in the physiological condition. The precision of THGM-based g-ratio estimation was corroborated in mouse models of hypomyelination. Finally, we demonstrated the feasibility of THGM to monitor morphological changes of myelin during postnatal development and degeneration. The outstanding capabilities of THGM may be useful for elucidation of the mechanism of myelin formation and pathogenesis.

摘要

由于缺乏合适的成像技术,对髓鞘形成过程中轴突与神经胶质细胞之间动态相互作用的理解受到了阻碍。在此,我们展示了三次谐波产生显微镜(THGM)用于对活细胞培养物以及离体和体内组织中正在形成髓鞘的施万细胞进行无标记成像。获取了包括旁结、施密特-兰特尔曼切迹和卡哈尔带在内的各种紧密和非紧密髓鞘结构域的三维结构。施万细胞的其他传统光学显微镜无法观察到的亚细胞特征也得以可视化。我们测试了THGM用于紧密髓鞘形态测量的能力。与目前基于电子显微镜的方法不同,g值比率可以在生理条件下沿着有髓神经纤维的较长长度进行测定。在髓鞘形成不足的小鼠模型中证实了基于THGM的g值比率估计的准确性。最后,我们证明了THGM监测出生后发育和退变过程中髓鞘形态变化的可行性。THGM的卓越能力可能有助于阐明髓鞘形成机制和发病机制。

相似文献

1
Label-free imaging of Schwann cell myelination by third harmonic generation microscopy.
Proc Natl Acad Sci U S A. 2014 Dec 16;111(50):18025-30. doi: 10.1073/pnas.1417820111. Epub 2014 Dec 1.
2
Functional gap junctions in the schwann cell myelin sheath.
J Cell Biol. 1998 Aug 24;142(4):1095-104. doi: 10.1083/jcb.142.4.1095.
3
The Polarity Protein Pals1 Regulates Radial Sorting of Axons.
J Neurosci. 2015 Jul 22;35(29):10474-84. doi: 10.1523/JNEUROSCI.1593-15.2015.
5
A suspended carbon fiber culture to model myelination by human Schwann cells.
J Mater Sci Mater Med. 2017 Apr;28(4):57. doi: 10.1007/s10856-017-5867-x. Epub 2017 Feb 16.
7
The sarcoglycan complex in Schwann cells and its role in myelin stability.
Exp Neurol. 2007 May;205(1):257-69. doi: 10.1016/j.expneurol.2007.02.015. Epub 2007 Feb 28.
9
Label-free non-linear microscopy to measure myelin outcome in a rodent model of Charcot-Marie-Tooth diseases.
J Biophotonics. 2018 Dec;11(12):e201800186. doi: 10.1002/jbio.201800186. Epub 2018 Sep 5.
10
A Method to Measure Myeloarchitecture of the Murine Cerebral Cortex and by Intrinsic Third-Harmonic Generation.
Front Neuroanat. 2019 Jun 26;13:65. doi: 10.3389/fnana.2019.00065. eCollection 2019.

引用本文的文献

1
Vibrational spectroscopy and multiphoton microscopy for label-free visualization of nervous system degeneration and regeneration.
Biophys Rev. 2023 Oct 5;16(2):219-235. doi: 10.1007/s12551-023-01158-2. eCollection 2024 Apr.
2
Discontinuity third harmonic generation microscopy for label-free imaging and quantification of intraepidermal nerve fibers.
Cell Rep Methods. 2024 Mar 25;4(3):100735. doi: 10.1016/j.crmeth.2024.100735. Epub 2024 Mar 18.
3
Live Mapping of the Brain Extracellular Matrix and Remodeling in Neurological Disorders.
Small Methods. 2024 Jan;8(1):e2301117. doi: 10.1002/smtd.202301117. Epub 2023 Nov 3.
4
Third harmonic imaging contrast from tubular structures in the presence of index discontinuity.
Sci Rep. 2023 May 15;13(1):7850. doi: 10.1038/s41598-023-34528-7.
5
H-ABC tubulinopathy revealed by label-free second harmonic generation microscopy.
Sci Rep. 2022 Aug 24;12(1):14417. doi: 10.1038/s41598-022-18370-x.
6
Multiphoton microscopy for label-free multicolor imaging of peripheral nerve.
J Biomed Opt. 2022 May;27(5). doi: 10.1117/1.JBO.27.5.056501.
7
Advances in nonlinear optical microscopy techniques for in vivo and in vitro neuroimaging.
Biophys Rev. 2021 Aug 31;13(6):1199-1217. doi: 10.1007/s12551-021-00832-7. eCollection 2021 Dec.
10
Label-Free Multiphoton Microscopy: Much More Than Fancy Images.
Int J Mol Sci. 2021 Mar 6;22(5):2657. doi: 10.3390/ijms22052657.

本文引用的文献

1
In vivo introduction of transgenes into mouse sciatic nerve cells in situ using viral vectors.
Nat Protoc. 2014 May;9(5):1160-9. doi: 10.1038/nprot.2014.073. Epub 2014 Apr 24.
2
Distinct profiles of myelin distribution along single axons of pyramidal neurons in the neocortex.
Science. 2014 Apr 18;344(6181):319-24. doi: 10.1126/science.1249766.
4
Cellular, subcellular and functional in vivo labeling of the spinal cord using vital dyes.
Nat Protoc. 2013 Mar;8(3):481-90. doi: 10.1038/nprot.2013.022. Epub 2013 Feb 7.
5
Two-photon fluorescent imaging of myelination in the spinal cord.
ChemMedChem. 2012 Dec;7(12):2194-203. doi: 10.1002/cmdc.201200343. Epub 2012 Nov 7.
9
Signal epidetection in third-harmonic generation microscopy of turbid media.
Opt Express. 2007 Jul 9;15(14):8913-24. doi: 10.1364/oe.15.008913.
10
Laser scanning third-harmonic-generation microscopy in biology.
Opt Express. 1999 Oct 11;5(8):169-75. doi: 10.1364/oe.5.000169.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验