Suppr超能文献

纳米簇集作为质膜组织的主要特征。

Nanoclustering as a dominant feature of plasma membrane organization.

作者信息

Garcia-Parajo Maria F, Cambi Alessandra, Torreno-Pina Juan A, Thompson Nancy, Jacobson Ken

机构信息

ICFO-Institut de Ciencies Fotoniques, Mediterranean Technology Park, 08860 Castelldefels (Barcelona), Spain ICREA-Institució Catalana de Recerca i Estudis Avançats, 08010 Barcelona, Spain

Nanobiophysics, MIRA Institute for Biomedical Technology and Technical Medicine and MESA+ Institute for Nanotechnology, University of Twente, 7522 NB Enschede, The Netherlands Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands.

出版信息

J Cell Sci. 2014 Dec 1;127(Pt 23):4995-5005. doi: 10.1242/jcs.146340.

Abstract

Early studies have revealed that some mammalian plasma membrane proteins exist in small nanoclusters. The advent of super-resolution microscopy has corroborated and extended this picture, and led to the suggestion that many, if not most, membrane proteins are clustered at the plasma membrane at nanoscale lengths. In this Commentary, we present selected examples of glycosylphosphatidyl-anchored proteins, Ras family members and several immune receptors that provide evidence for nanoclustering. We advocate the view that nanoclustering is an important part of the hierarchical organization of proteins in the plasma membrane. According to this emerging picture, nanoclusters can be organized on the mesoscale to form microdomains that are capable of supporting cell adhesion, pathogen binding and immune cell-cell recognition amongst other functions. Yet, a number of outstanding issues concerning nanoclusters remain open, including the details of their molecular composition, biogenesis, size, stability, function and regulation. Notions about these details are put forth and suggestions are made about nanocluster function and why this general feature of protein nanoclustering appears to be so prevalent.

摘要

早期研究表明,一些哺乳动物的质膜蛋白以小纳米簇的形式存在。超分辨率显微镜的出现证实并拓展了这一情况,并引发了这样一种观点,即即便不是大多数,许多膜蛋白在质膜上以纳米级长度聚集。在这篇评论文章中,我们展示了糖基磷脂酰肌醇锚定蛋白、Ras家族成员以及几种免疫受体的特定例子,这些例子为纳米聚集提供了证据。我们主张这样一种观点,即纳米聚集是质膜中蛋白质分层组织的重要组成部分。根据这一逐渐清晰的图景,纳米簇可以在中尺度上组织形成微结构域,这些微结构域能够支持细胞黏附、病原体结合以及免疫细胞间识别等多种功能。然而,关于纳米簇仍有许多悬而未决的重要问题,包括它们的分子组成、生物发生、大小、稳定性、功能和调控的细节。本文提出了关于这些细节的观点,并就纳米簇的功能以及为何蛋白质纳米聚集这一普遍特征似乎如此普遍给出了建议。

相似文献

1
Nanoclustering as a dominant feature of plasma membrane organization.
J Cell Sci. 2014 Dec 1;127(Pt 23):4995-5005. doi: 10.1242/jcs.146340.
2
FLIM-FRET Analysis of Ras Nanoclustering and Membrane-Anchorage.
Methods Mol Biol. 2021;2262:233-250. doi: 10.1007/978-1-0716-1190-6_13.
3
Super-Resolution Imaging and Spatial Analysis of RAS on Intact Plasma Membrane Sheets.
Methods Mol Biol. 2021;2262:217-232. doi: 10.1007/978-1-0716-1190-6_12.
4
Mechanisms of protein nanoscale clustering.
Curr Opin Cell Biol. 2017 Feb;44:86-92. doi: 10.1016/j.ceb.2016.09.004. Epub 2016 Sep 22.
5
6
Nonsteroidal anti-inflammatory drugs alter the spatiotemporal organization of Ras proteins on the plasma membrane.
J Biol Chem. 2012 May 11;287(20):16586-95. doi: 10.1074/jbc.M112.348490. Epub 2012 Mar 19.
7
Nanoclusters of the resting T cell antigen receptor (TCR) localize to non-raft domains.
Biochim Biophys Acta. 2015 Apr;1853(4):802-9. doi: 10.1016/j.bbamcr.2014.12.017. Epub 2014 Dec 20.
8
H-ras, K-ras, and inner plasma membrane raft proteins operate in nanoclusters with differential dependence on the actin cytoskeleton.
Proc Natl Acad Sci U S A. 2005 Oct 25;102(43):15500-5. doi: 10.1073/pnas.0504114102. Epub 2005 Oct 13.
9
Signal integration by lipid-mediated spatial cross talk between Ras nanoclusters.
Mol Cell Biol. 2014 Mar;34(5):862-76. doi: 10.1128/MCB.01227-13. Epub 2013 Dec 23.
10
Ras nanoclusters: Versatile lipid-based signaling platforms.
Biochim Biophys Acta. 2015 Apr;1853(4):841-9. doi: 10.1016/j.bbamcr.2014.09.008. Epub 2014 Sep 16.

引用本文的文献

2
Ultrasmall chemogenetic tags with group-transfer ligands.
bioRxiv. 2025 May 10:2025.05.10.653252. doi: 10.1101/2025.05.10.653252.
6
Higher-order transient membrane protein structures.
Proc Natl Acad Sci U S A. 2025 Jan 7;122(1):e2421275121. doi: 10.1073/pnas.2421275121. Epub 2024 Dec 31.
7
Design of pseudosymmetric protein hetero-oligomers.
Nat Commun. 2024 Dec 18;15(1):10684. doi: 10.1038/s41467-024-54913-8.
10
Towards a unifying model for B-cell receptor triggering.
Nat Rev Immunol. 2025 Feb;25(2):77-91. doi: 10.1038/s41577-024-01073-x. Epub 2024 Sep 10.

本文引用的文献

1
Enhanced receptor-clathrin interactions induced by N-glycan-mediated membrane micropatterning.
Proc Natl Acad Sci U S A. 2014 Jul 29;111(30):11037-42. doi: 10.1073/pnas.1402041111. Epub 2014 Jul 16.
2
Recent applications of superresolution microscopy in neurobiology.
Curr Opin Chem Biol. 2014 Jun;20:16-21. doi: 10.1016/j.cbpa.2014.03.021. Epub 2014 May 8.
3
H-Ras forms dimers on membrane surfaces via a protein-protein interface.
Proc Natl Acad Sci U S A. 2014 Feb 25;111(8):2996-3001. doi: 10.1073/pnas.1321155111. Epub 2014 Feb 10.
4
Low copy numbers of DC-SIGN in cell membrane microdomains: implications for structure and function.
Traffic. 2014 Feb;15(2):179-96. doi: 10.1111/tra.12138. Epub 2013 Dec 3.
6
Molecular mechanisms of cellular mechanosensing.
Nat Mater. 2013 Nov;12(11):1064-71. doi: 10.1038/nmat3772. Epub 2013 Oct 20.
7
Evolutionary diversification of the multimeric states of proteins.
Proc Natl Acad Sci U S A. 2013 Jul 23;110(30):E2821-8. doi: 10.1073/pnas.1310980110. Epub 2013 Jul 8.
10
The actin and tetraspanin networks organize receptor nanoclusters to regulate B cell receptor-mediated signaling.
Immunity. 2013 Mar 21;38(3):461-74. doi: 10.1016/j.immuni.2012.11.019. Epub 2013 Mar 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验