Suppr超能文献

开发一种预测危重症儿童脑电图癫痫发作的模型。

Development of a model to predict electroencephalographic seizures in critically ill children.

机构信息

Department of Pediatrics (Division of Neurology), Children's Hospital of Philadelphia, Philadelphia, PA, USA.

Departments of Neurology and Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.

出版信息

Epilepsia. 2020 Mar;61(3):498-508. doi: 10.1111/epi.16448. Epub 2020 Feb 20.

Abstract

OBJECTIVE

Electroencephalographic seizures (ESs) are common in encephalopathic critically ill children, but ES identification with continuous electroencephalography (EEG) monitoring (CEEG) is resource-intense. We aimed to develop an ES prediction model that would enable clinicians to stratify patients by ES risk and optimally target limited CEEG resources. We aimed to determine whether incorporating data from a screening EEG yielded better performance characteristics than models using clinical variables alone.

METHODS

We performed a prospective observational study of 719 consecutive critically ill children with acute encephalopathy undergoing CEEG in the pediatric intensive care unit of a quaternary care institution between April 2017 and February 2019. We identified clinical and EEG risk factors for ES. We evaluated model performance with area under the receiver-operating characteristic (ROC) curve (AUC), validated the optimal model with the highest AUC using a fivefold cross-validation, and calculated test characteristics emphasizing high sensitivity. We applied the optimal operating slope strategy to identify the optimal cutoff to define whether a patient should undergo CEEG.

RESULTS

The incidence of ES was 26%. Variables associated with increased ES risk included age, acute encephalopathy category, clinical seizures prior to CEEG initiation, EEG background, and epileptiform discharges. Combining clinical and EEG variables yielded better model performance (AUC 0.80) than clinical variables alone (AUC 0.69; P < .01). At a 0.10 cutoff selected to emphasize sensitivity, the optimal model had a sensitivity of 92%, specificity of 37%, positive predictive value of 34%, and negative predictive value of 93%. If applied, the model would limit 29% of patients from undergoing CEEG while failing to identify 8% of patients with ES.

SIGNIFICANCE

A model employing readily available clinical and EEG variables could target limited CEEG resources to critically ill children at highest risk for ES, making CEEG-guided management a more viable neuroprotective strategy.

摘要

目的

在脑病危重症患儿中,脑电图癫痫发作(ES)较为常见,但连续脑电图(CEEG)监测的 ES 识别需要大量资源。我们旨在开发一种 ES 预测模型,使临床医生能够根据 ES 风险对患者进行分层,并优化有限的 CEEG 资源。我们旨在确定是否纳入筛查脑电图数据比仅使用临床变量的模型具有更好的性能特征。

方法

我们对 2017 年 4 月至 2019 年 2 月在一家四级医疗机构的儿科重症监护病房接受 CEEG 的 719 例连续急性脑病危重症儿童进行了前瞻性观察研究。我们确定了 ES 的临床和脑电图危险因素。我们使用接受者操作特征(ROC)曲线下面积(AUC)评估模型性能,使用五重交叉验证验证 AUC 最高的最优模型,并计算强调高灵敏度的测试特征。我们应用最优操作斜率策略来确定最佳截定点,以定义患者是否需要进行 CEEG。

结果

ES 的发生率为 26%。与 ES 风险增加相关的变量包括年龄、急性脑病类别、CEEG 开始前的临床癫痫发作、脑电图背景和癫痫样放电。与仅使用临床变量相比,结合临床和脑电图变量可提高模型性能(AUC 为 0.80)(AUC 为 0.69;P<0.01)。在强调灵敏度的 0.10 截定点下,最优模型的灵敏度为 92%,特异性为 37%,阳性预测值为 34%,阴性预测值为 93%。如果应用该模型,将限制 29%的患者进行 CEEG,而漏诊 8%的 ES 患者。

意义

采用易于获得的临床和脑电图变量的模型可以将有限的 CEEG 资源用于 ES 风险最高的危重症儿童,使 CEEG 指导的管理成为更可行的神经保护策略。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验