Department of Anesthesia and Critical Care Medicine, Children's Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine, United States.
Department of Anesthesia and Critical Care Medicine, Children's Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine, United States; Data Science and Biostatistics Unit, Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, United States.
Resuscitation. 2021 Oct;167:282-288. doi: 10.1016/j.resuscitation.2021.06.020. Epub 2021 Jul 5.
Assessment of brain injury severity early after cardiac arrest (CA) may guide therapeutic interventions and help clinicians counsel families regarding neurologic prognosis. We aimed to determine whether adding EEG features to predictive models including clinical variables and examination signs increased the accuracy of short-term neurobehavioral outcome prediction.
This was a prospective, observational, single-center study of consecutive infants and children resuscitated from CA. Standardized EEG scoring was performed by an electroencephalographer for the initial EEG timepoint after return of spontaneous circulation (ROSC) and each 12-h segment from the time of ROSC up to 48 h. EEG Background Category was scored as: (1) normal; (2) slow-disorganized; (3) discontinuous or burst-suppression; or (4) attenuated-featureless. The primary outcome was neurobehavioral outcome at discharge from the Pediatric Intensive Care Unit. To develop the final predictive model, we compared areas under the receiver operating characteristic curves (AUROC) from models with varying combinations of Demographic/Arrest Variables, Examination Signs, and EEG Features.
We evaluated 89 infants and children. Initial EEG Background Category was normal in 9 subjects (10%), slow-disorganized in 44 (49%), discontinuous or burst suppression in 22 (25%), and attenuated-featureless in 14 (16%). The final model included Demographic/Arrest Variables (witnessed status, doses of epinephrine, initial lactate after ROSC) and EEG Background Category which achieved AUROC of 0.9 for unfavorable neurobehavioral outcome and 0.83 for mortality.
The addition of standardized EEG Background Categories to readily available CA variables significantly improved early stratification of brain injury severity after pediatric CA.
评估心脏骤停(CA)后早期的脑损伤严重程度可以指导治疗干预,并帮助临床医生向家属提供有关神经预后的信息。我们旨在确定在包括临床变量和检查体征的预测模型中添加 EEG 特征是否可以提高短期神经行为预后预测的准确性。
这是一项连续的、前瞻性的、单中心的研究,研究对象为从 CA 中复苏的婴儿和儿童。由脑电图专家对自主循环恢复(ROSC)后初始 EEG 时间点以及从 ROSC 开始到 48 小时的每 12 小时片段进行标准化 EEG 评分。EEG 背景类别评分如下:(1)正常;(2)慢而杂乱;(3)不连续或爆发抑制;或(4)衰减无特征。主要结局是儿科重症监护病房出院时的神经行为结局。为了制定最终的预测模型,我们比较了不同组合的人口统计学/逮捕变量、检查体征和 EEG 特征的模型的接收者操作特征曲线(AUROC)下的面积。
我们评估了 89 名婴儿和儿童。9 名(10%)受试者的初始 EEG 背景类别正常,44 名(49%)受试者的 EEG 背景类别慢而杂乱,22 名(25%)受试者的 EEG 背景类别不连续或爆发抑制,14 名(16%)受试者的 EEG 背景类别衰减无特征。最终模型包括人口统计学/逮捕变量(目击者状态、肾上腺素剂量、ROSC 后初始乳酸)和 EEG 背景类别,对不良神经行为结局的 AUROC 为 0.9,对死亡率的 AUROC 为 0.83。
在现成的 CA 变量中添加标准化 EEG 背景类别显著提高了儿科 CA 后早期脑损伤严重程度的分层。