Suppr超能文献

用于研究血管阻塞过程的体外微流控模型。

In vitro microfluidic model for the study of vaso-occlusive processes.

作者信息

Dominical Venina M, Vital Daiana M, O'Dowd Frank, Saad Sara T O, Costa Fernando F, Conran Nicola

机构信息

INCT de Sangue, Hematology and Hemotherapy Center, School of Medicine, University of Campinas, Campinas, São Paulo, Brazil.

Cellix Ltd., Dublin, Ireland.

出版信息

Exp Hematol. 2015 Mar;43(3):223-8. doi: 10.1016/j.exphem.2014.10.015. Epub 2014 Nov 11.

Abstract

Vaso-occlusion, responsible for much of the morbidity of sickle-cell disease, is a complex multicellular process, apparently triggered by leukocyte adhesion to the vessel wall. The microcirculation represents a major site of leukocyte-endothelial interactions and vaso-occlusive processes. We have developed a biochip with subdividing interconnecting microchannels that decrease in size (40 μm to 10 μm in width), for use in conjunction with a precise microfluidic device, to mimic cell flow and adhesion through channels of sizes that approach those of the microcirculation. The biochips were utilized to observe the dynamics of the passage of neutrophils and red blood cells, isolated from healthy and sickle-cell anemia (SCA) individuals, through laminin or endothelial adhesion molecule-coated microchannels at physiologically relevant rates of flow and shear stress. Obstruction of E-selectin/intercellular adhesion molecule 1-coated biochip microchannels by SCA neutrophils was significantly greater than that observed for healthy neutrophils, particularly in the microchannels of 40-15 μm in width. Whereas SCA red blood cells alone did not significantly adhere to, or obstruct, microchannels, mixed suspensions of SCA neutrophils and red blood cells significantly adhered to and obstructed laminin-coated channels. Results from this in vitro microfluidic model support a primary role for leukocytes in the initiation of SCA occlusive processes in the microcirculation. This assay represents an easy-to-use and reproducible in vitro technique for understanding molecular mechanisms and cellular interactions occurring in subdividing microchannels of widths approaching those observed in the microvasculature. The assay could hold potential for testing drugs developed to inhibit occlusive mechanisms such as those observed in SCA and thrombotic diseases.

摘要

血管闭塞是镰状细胞病发病的主要原因,是一个复杂的多细胞过程,显然是由白细胞黏附于血管壁引发的。微循环是白细胞与内皮细胞相互作用及血管闭塞过程的主要发生部位。我们开发了一种生物芯片,其具有相互连接的细分微通道,通道尺寸逐渐减小(宽度从40μm到10μm),并与精密微流控装置配合使用,以模拟细胞通过接近微循环尺寸通道的流动和黏附。利用该生物芯片观察从健康个体和镰状细胞贫血(SCA)个体中分离出的中性粒细胞和红细胞,以生理相关的流速和剪切应力通过层粘连蛋白或内皮黏附分子包被的微通道的动态过程。SCA中性粒细胞对E-选择素/细胞间黏附分子1包被的生物芯片微通道的阻塞明显大于健康中性粒细胞,特别是在宽度为40 - 15μm的微通道中。虽然单独的SCA红细胞不会显著黏附或阻塞微通道,但SCA中性粒细胞和红细胞的混合悬浮液会显著黏附并阻塞层粘连蛋白包被的通道。该体外微流控模型的结果支持白细胞在SCA微循环闭塞过程起始中起主要作用。该检测方法是一种易于使用且可重复的体外技术,用于理解在接近微血管观察到的宽度的细分微通道中发生的分子机制和细胞相互作用。该检测方法可能具有测试开发用于抑制诸如SCA和血栓性疾病中观察到的闭塞机制的药物的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验