Suppr超能文献

快速扫描电子顺磁共振信号的数字生成激励和近基带正交检测。

Digitally generated excitation and near-baseband quadrature detection of rapid scan EPR signals.

作者信息

Tseitlin Mark, Yu Zhelin, Quine Richard W, Rinard George A, Eaton Sandra S, Eaton Gareth R

机构信息

Department of Chemistry and Biochemistry, University of Denver, Denver, CO 80210, USA.

School of Engineering and Computer Science, University of Denver, Denver, CO 80210, USA.

出版信息

J Magn Reson. 2014 Dec;249:126-134. doi: 10.1016/j.jmr.2014.10.011. Epub 2014 Oct 30.

Abstract

The use of multiple synchronized outputs from an arbitrary waveform generator (AWG) provides the opportunity to perform EPR experiments differently than by conventional EPR. We report a method for reconstructing the quadrature EPR spectrum from periodic signals that are generated with sinusoidal magnetic field modulation such as continuous wave (CW), multiharmonic, or rapid scan experiments. The signal is down-converted to an intermediate frequency (IF) that is less than the field scan or field modulation frequency and then digitized in a single channel. This method permits use of a high-pass analog filter before digitization to remove the strong non-EPR signal at the IF, that might otherwise overwhelm the digitizer. The IF is the difference between two synchronized X-band outputs from a Tektronix AWG 70002A, one of which is for excitation and the other is the reference for down-conversion. To permit signal averaging, timing was selected to give an exact integer number of full cycles for each frequency. In the experiments reported here the IF was 5kHz and the scan frequency was 40kHz. To produce sinusoidal rapid scans with a scan frequency eight times IF, a third synchronized output generated a square wave that was converted to a sine wave. The timing of the data acquisition with a Bruker SpecJet II was synchronized by an external clock signal from the AWG. The baseband quadrature signal in the frequency domain was reconstructed. This approach has the advantages that (i) the non-EPR response at the carrier frequency is eliminated, (ii) both real and imaginary EPR signals are reconstructed from a single physical channel to produce an ideal quadrature signal, and (iii) signal bandwidth does not increase relative to baseband detection. Spectra were obtained by deconvolution of the reconstructed signals for solid BDPA (1,3-bisdiphenylene-2-phenylallyl) in air, 0.2mM trityl OX63 in water, N perdeuterated tempone, and a nitroxide with a 0.5G partially-resolved proton hyperfine splitting.

摘要

使用任意波形发生器(AWG)的多个同步输出提供了以不同于传统电子顺磁共振(EPR)的方式进行EPR实验的机会。我们报告了一种从通过正弦磁场调制产生的周期性信号重建正交EPR谱的方法,例如连续波(CW)、多谐波或快速扫描实验。信号被下变频到一个低于场扫描或场调制频率的中频(IF),然后在单个通道中数字化。这种方法允许在数字化之前使用高通模拟滤波器来去除中频处的强非EPR信号,否则该信号可能会使数字化仪过载。中频是泰克AWG 70002A的两个同步X波段输出之间的差值,其中一个用于激发,另一个用于下变频参考。为了允许信号平均,选择定时以给出每个频率的完整周期的确切整数。在本文报道的实验中,中频为5kHz,扫描频率为40kHz。为了产生扫描频率为中频八倍的正弦快速扫描,第三个同步输出产生一个方波,该方波被转换为正弦波。使用布鲁克SpecJet II进行数据采集的定时由来自AWG的外部时钟信号同步。在频域中重建基带正交信号。这种方法具有以下优点:(i)消除了载波频率处的非EPR响应,(ii)从单个物理通道重建实部和虚部EPR信号以产生理想的正交信号,以及(iii)相对于基带检测,信号带宽不会增加。通过对空气中固体BDPA(1,3 - 双亚苯基 - 2 - 苯基烯丙基)、水中0.2mM三苯甲基OX63、N - 全氘代TEMPONE以及具有0.5G部分分辨质子超精细分裂的氮氧化物的重建信号进行去卷积获得光谱。

相似文献

1
Digitally generated excitation and near-baseband quadrature detection of rapid scan EPR signals.
J Magn Reson. 2014 Dec;249:126-134. doi: 10.1016/j.jmr.2014.10.011. Epub 2014 Oct 30.
2
Modular imaging system: Rapid scan EPR at 800 MHz.
J Magn Reson. 2019 Aug;305:94-103. doi: 10.1016/j.jmr.2019.06.003. Epub 2019 Jun 8.
3
Digital EPR with an arbitrary waveform generator and direct detection at the carrier frequency.
J Magn Reson. 2011 Dec;213(1):119-25. doi: 10.1016/j.jmr.2011.09.024. Epub 2011 Sep 14.
4
Full cycle rapid scan EPR deconvolution algorithm.
J Magn Reson. 2017 Aug;281:272-278. doi: 10.1016/j.jmr.2017.06.008. Epub 2017 Jun 11.
5
Field-stepped direct detection electron paramagnetic resonance.
J Magn Reson. 2015 Sep;258:58-64. doi: 10.1016/j.jmr.2015.06.011. Epub 2015 Jul 17.
6
Multiharmonic electron paramagnetic resonance for extended samples with both narrow and broad lines.
J Magn Reson. 2015 May;254:86-92. doi: 10.1016/j.jmr.2015.03.006. Epub 2015 Mar 23.
7
Rapid frequency scan EPR.
J Magn Reson. 2011 Aug;211(2):156-61. doi: 10.1016/j.jmr.2011.05.006. Epub 2011 May 19.
10
Field-domain rapid-scan EPR at 240GHz for studies of protein functional dynamics at room temperature.
J Magn Reson. 2024 Sep;366:107744. doi: 10.1016/j.jmr.2024.107744. Epub 2024 Jul 27.

引用本文的文献

1
EPR Everywhere.
Appl Magn Reson. 2021;52(8):1113-1139. doi: 10.1007/s00723-020-01304-z. Epub 2021 Jan 24.
2
Modular imaging system: Rapid scan EPR at 800 MHz.
J Magn Reson. 2019 Aug;305:94-103. doi: 10.1016/j.jmr.2019.06.003. Epub 2019 Jun 8.
3
Development of an L-band rapid scan EPR digital console.
J Magn Reson. 2019 Jul;304:42-52. doi: 10.1016/j.jmr.2019.05.003. Epub 2019 May 10.
4
Background correction in rapid scan EPR spectroscopy.
J Magn Reson. 2018 Aug;293:1-8. doi: 10.1016/j.jmr.2018.05.010. Epub 2018 May 17.
5
Full cycle rapid scan EPR deconvolution algorithm.
J Magn Reson. 2017 Aug;281:272-278. doi: 10.1016/j.jmr.2017.06.008. Epub 2017 Jun 11.
6
Rapid-scan EPR imaging.
J Magn Reson. 2017 Jul;280:140-148. doi: 10.1016/j.jmr.2017.02.013.
7
Field-stepped direct detection electron paramagnetic resonance.
J Magn Reson. 2015 Sep;258:58-64. doi: 10.1016/j.jmr.2015.06.011. Epub 2015 Jul 17.

本文引用的文献

1
DAC-board based X-band EPR spectrometer with arbitrary waveform control.
J Magn Reson. 2013 Oct;235:95-108. doi: 10.1016/j.jmr.2013.07.015. Epub 2013 Aug 15.
2
Corrections for sinusoidal background and non-orthogonality of signal channels in sinusoidal rapid magnetic field scans.
J Magn Reson. 2012 Oct;223:80-4. doi: 10.1016/j.jmr.2012.07.023. Epub 2012 Aug 8.
3
X-band rapid-scan EPR of nitroxyl radicals.
J Magn Reson. 2012 Jan;214(1):221-6. doi: 10.1016/j.jmr.2011.11.007. Epub 2011 Nov 20.
4
Digital EPR with an arbitrary waveform generator and direct detection at the carrier frequency.
J Magn Reson. 2011 Dec;213(1):119-25. doi: 10.1016/j.jmr.2011.09.024. Epub 2011 Sep 14.
5
Electron spin relaxation and heterogeneity of the 1:1 α,γ-bisdiphenylene-β-phenylallyl (BDPA)/benzene complex.
J Phys Chem B. 2011 Jun 23;115(24):7986-90. doi: 10.1021/jp201978w. Epub 2011 May 27.
6
Next generation techniques in the high resolution spectroscopy of biologically relevant molecules.
Phys Chem Chem Phys. 2011 Apr 28;13(16):7253-62. doi: 10.1039/c0cp01573c. Epub 2011 Mar 10.
7
Reconstruction of the first-derivative EPR spectrum from multiple harmonics of the field-modulated continuous wave signal.
J Magn Reson. 2011 Apr;209(2):277-81. doi: 10.1016/j.jmr.2011.01.027. Epub 2011 Feb 3.
8
Deconvolution of sinusoidal rapid EPR scans.
J Magn Reson. 2011 Feb;208(2):279-83. doi: 10.1016/j.jmr.2010.11.015. Epub 2010 Nov 26.
9
Digital detection and processing of multiple quadrature harmonics for EPR spectroscopy.
J Magn Reson. 2010 Dec;207(2):322-31. doi: 10.1016/j.jmr.2010.09.016. Epub 2010 Sep 29.
10
W-band frequency-swept EPR.
J Magn Reson. 2010 Jul;205(1):93-101. doi: 10.1016/j.jmr.2010.04.005. Epub 2010 Apr 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验