Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, CA, USA.
J Magn Reson. 2013 Oct;235:95-108. doi: 10.1016/j.jmr.2013.07.015. Epub 2013 Aug 15.
We present arbitrary control over a homogenous spin system, demonstrated on a simple, home-built, electron paramagnetic resonance (EPR) spectrometer operating at 8-10 GHz (X-band) and controlled by a 1 GHz arbitrary waveform generator (AWG) with 42 dB (i.e. 14-bit) of dynamic range. Such a spectrometer can be relatively easily built from a single DAC (digital to analog converter) board with a modest number of stock components and offers powerful capabilities for automated digital calibration and correction routines that allow it to generate shaped X-band pulses with precise amplitude and phase control. It can precisely tailor the excitation profiles "seen" by the spins in the microwave resonator, based on feedback calibration with experimental input. We demonstrate the capability to generate a variety of pulse shapes, including rectangular, triangular, Gaussian, sinc, and adiabatic rapid passage waveforms. We then show how one can precisely compensate for the distortion and broadening caused by transmission into the microwave cavity in order to optimize corrected waveforms that are distinctly different from the initial, uncorrected waveforms. Specifically, we exploit a narrow EPR signal whose width is finer than the features of any distortions in order to map out the response to a short pulse, which, in turn, yields the precise transfer function of the spectrometer system. This transfer function is found to be consistent for all pulse shapes in the linear response regime. In addition to allowing precise waveform shaping capabilities, the spectrometer presented here offers complete digital control and calibration of the spectrometer that allows one to phase cycle the pulse phase with 0.007° resolution and to specify the inter-pulse delays and pulse durations to ≤ 250 ps resolution. The implications and potential applications of these capabilities will be discussed.
我们展示了对均匀自旋系统的任意控制,该系统在一个简单的、自制的、工作在 8-10GHz(X 波段)的电子顺磁共振(EPR)光谱仪上得到了演示,该光谱仪由一个 1GHz 的任意波形发生器(AWG)控制,具有 42dB(即 14 位)的动态范围。这种光谱仪可以相对容易地用单个 DAC(数模转换器)板和少量库存组件构建而成,具有强大的自动化数字校准和校正功能,可以生成具有精确幅度和相位控制的形状 X 波段脉冲。它可以根据与实验输入的反馈校准,精确调整微波谐振器中自旋所“看到”的激励轮廓。我们展示了生成各种脉冲形状的能力,包括矩形、三角形、高斯、 sinc 和绝热快速通过波形。然后,我们展示了如何精确补偿传输到微波腔引起的失真和展宽,以优化与初始未经校正的波形明显不同的校正波形。具体来说,我们利用宽度比任何失真特征都要精细的窄 EPR 信号来绘制对短脉冲的响应,这反过来又可以得到光谱仪系统的精确传递函数。在线性响应范围内,发现该传递函数对于所有脉冲形状都是一致的。除了允许精确的波形成形能力外,这里提出的光谱仪还提供了对光谱仪的完全数字控制和校准,允许以 0.007°的分辨率对脉冲相位进行相移循环,并指定脉冲间延迟和脉冲持续时间至 ≤250ps 的分辨率。这些能力的含义和潜在应用将被讨论。