Hensley Kenneth, Denton Travis T
Department of Pathology and Department of Neurosciences, University of Toledo Health Science Campus, 3000 Arlington Avenue, Toledo, OH 43614, USA.
Department of Pharmaceutical Sciences, Washington State University College of Pharmacy, P.O. Box 1495, Spokane, WA 99201, USA.
Free Radic Biol Med. 2015 Jan;78:123-34. doi: 10.1016/j.freeradbiomed.2014.10.581. Epub 2014 Nov 6.
Scientific appreciation for the subtlety of brain sulfur chemistry has lagged, despite understanding that the brain must maintain high glutathione (GSH) to protect against oxidative stress in tissue that has both a high rate of oxidative respiration and a high content of oxidation-prone polyunsaturated fatty acids. In fact, the brain was long thought to lack a complete transsulfuration pathway (TSP) for cysteine synthesis. It is now clear that not only does the brain possess a functional TSP, but brain TSP enzymes catalyze a rich array of alternative reactions that generate novel species including the gasotransmitter hydrogen sulfide (H2S) and the atypical amino acid lanthionine (Lan). Moreover, TSP intermediates can be converted to unusual cyclic ketimines via transamination. Cell-penetrating derivatives of one such compound, lanthionine ketimine (LK), have potent antioxidant, neuroprotective, neurotrophic, and antineuroinflammatory actions and mitigate diverse neurodegenerative conditions in preclinical rodent models. This review will explore the source and function of alternative TSP products, and lanthionine-derived metabolites in particular. The known biological origins of lanthionine and its ketimine metabolite will be described in detail and placed in context with recent discoveries of a GSH- and LK-binding brain protein called LanCL1 that is proving essential for neuronal antioxidant defense; and a related LanCL2 homolog now implicated in immune sensing and cell fate determinations. The review will explore possible endogenous functions of lanthionine metabolites and will discuss the therapeutic potential of lanthionine ketimine derivatives for mitigating diverse neurological conditions including Alzheimer׳s disease, stroke, motor neuron disease, and glioma.
尽管人们已经认识到,大脑必须维持高浓度的谷胱甘肽(GSH),以保护自身免受氧化应激的影响,因为大脑组织具有高氧化呼吸速率和高含量的易氧化多不饱和脂肪酸,但科学界对大脑硫化学微妙之处的认识仍滞后。事实上,长期以来人们一直认为大脑缺乏完整的半胱氨酸合成转硫途径(TSP)。现在很清楚,大脑不仅拥有功能性的TSP,而且大脑TSP酶催化一系列丰富的替代反应,生成包括气体信号分子硫化氢(H2S)和非典型氨基酸羊毛硫氨酸(Lan)在内的新物质。此外,TSP中间体可通过转氨作用转化为不寻常的环状酮亚胺。一种这样的化合物——羊毛硫氨酸酮亚胺(LK)的细胞穿透衍生物,具有强大的抗氧化、神经保护、神经营养和抗神经炎症作用,并能减轻临床前啮齿动物模型中的多种神经退行性疾病。本综述将探讨替代TSP产物,特别是羊毛硫氨酸衍生代谢物的来源和功能。将详细描述羊毛硫氨酸及其酮亚胺代谢物的已知生物学来源,并结合最近发现的一种名为LanCL1的与GSH和LK结合的脑蛋白进行阐述,该蛋白对神经元抗氧化防御至关重要;以及一种相关的LanCL2同源物,现在发现它与免疫传感和细胞命运决定有关。本综述将探讨羊毛硫氨酸代谢物可能的内源性功能,并讨论羊毛硫氨酸酮亚胺衍生物在减轻包括阿尔茨海默病、中风、运动神经元疾病和胶质瘤在内的多种神经系统疾病方面的治疗潜力。