Suppr超能文献

可逆与不可逆蛋白质谷胱甘肽化的比较。

A comparison of reversible versus irreversible protein glutathionylation.

作者信息

Townsend Danyelle M, Lushchak Volodymyr I, Cooper Arthur J L

机构信息

Department of Pharmaceutical and Biomedical Sciences, Medical University of South Carolina, Charleston, South Carolina, USA.

Department of Biochemistry and Biotechnology, Vassyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine.

出版信息

Adv Cancer Res. 2014;122:177-98. doi: 10.1016/B978-0-12-420117-0.00005-0.

Abstract

Glutathionylation is generally a reversible posttranslational modification that occurs to cysteine residues that have been exposed to reactive oxygen species (P-SSG). This cyclical process can regulate various clusters of proteins, including those involved in critical cellular signaling functions. However, certain conditions can favor the formation of dehydroamino acids, such as 2,3-didehydroalanine (2,3-dehydroalanine, DHA) and 2,3-didehydrobutyrine (2,3-dehydrobutyrine), which can act as Michael acceptors. In turn, these can form Michael adducts with glutathione (GSH), resulting in the formation of a stable thioether conjugate, an irreversible process referred to as nonreducible glutathionylation. This is predicted to be prevalent in nature, particularly in more slowly turning over proteins. Such nonreducible glutathionylation can be distinguished from the more facile cycling signaling processes and is predicted to be of gerontological, toxicological, pharmacological, and oncological relevance. Here, we compare reversible and irreversible glutathionylation.

摘要

谷胱甘肽化通常是一种可逆的翻译后修饰,发生在暴露于活性氧(P-SSG)的半胱氨酸残基上。这个循环过程可以调节各种蛋白质簇,包括那些参与关键细胞信号功能的蛋白质。然而,某些条件有利于脱氢氨基酸的形成,如2,3-二脱氢丙氨酸(2,3-dehydroalanine,DHA)和2,3-二脱氢丁氨酸(2,3-dehydrobutyrine),它们可以作为迈克尔受体。反过来,这些物质可以与谷胱甘肽(GSH)形成迈克尔加合物,导致形成稳定的硫醚共轭物,这是一个不可逆的过程,称为不可还原的谷胱甘肽化。预计这种情况在自然界中很普遍,特别是在周转较慢的蛋白质中。这种不可还原的谷胱甘肽化可以与更容易循环的信号过程区分开来,预计与老年学、毒理学、药理学和肿瘤学相关。在这里,我们比较了可逆和不可逆的谷胱甘肽化。

相似文献

2
7
Dysregulation of the glutaredoxin/glutathionylation redox axis in lung diseases.肺疾病中谷氧还蛋白/谷胱甘肽化氧化还原轴的失调。
Am J Physiol Cell Physiol. 2020 Feb 1;318(2):C304-C327. doi: 10.1152/ajpcell.00410.2019. Epub 2019 Nov 6.

引用本文的文献

1
Antioxidants: a comprehensive review.抗氧化剂:全面综述。
Arch Toxicol. 2025 May;99(5):1893-1997. doi: 10.1007/s00204-025-03997-2. Epub 2025 Apr 15.
3
Chemistry and biology of enzymes in protein glutathionylation.蛋白质谷胱甘肽化中的酶的化学和生物学。
Curr Opin Chem Biol. 2023 Aug;75:102326. doi: 10.1016/j.cbpa.2023.102326. Epub 2023 May 26.
5
Emerging chemistry and biology in protein glutathionylation.蛋白质谷胱甘肽化中的新兴化学和生物学。
Curr Opin Chem Biol. 2022 Dec;71:102221. doi: 10.1016/j.cbpa.2022.102221. Epub 2022 Oct 9.
7
The Role of BRG1 in Antioxidant and Redox Signaling.BRG1 在抗氧化和氧化还原信号中的作用。
Oxid Med Cell Longev. 2020 Sep 14;2020:6095673. doi: 10.1155/2020/6095673. eCollection 2020.

本文引用的文献

1
Causes and consequences of cysteine S-glutathionylation.半胱氨酸S-谷胱甘肽化的原因及后果。
J Biol Chem. 2013 Sep 13;288(37):26497-504. doi: 10.1074/jbc.R113.461368. Epub 2013 Jul 16.
3
Reversal of 2-Cys peroxiredoxin oligomerization by sulfiredoxin.硫氧还蛋白通过二硫键还原酶逆转 2-Cys 过氧化物酶二聚体。
Biochem Biophys Res Commun. 2013 Mar 8;432(2):291-5. doi: 10.1016/j.bbrc.2013.01.114. Epub 2013 Feb 8.
8
Synthesis, cellular evaluation, and mechanism of action of piperlongumine analogs.哌柏素类似物的合成、细胞评价及作用机制。
Proc Natl Acad Sci U S A. 2012 Sep 18;109(38):15115-20. doi: 10.1073/pnas.1212802109. Epub 2012 Sep 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验