Suppr超能文献

Catalytic activity of cytochrome oxidase and cytochrome c in apolar solvents containing phospholipids and low amounts of water.

作者信息

Escamilla E, Ayala G, de Gómez-Puyou M T, Gómez-Puyou A, Millán L, Darszon A

机构信息

Instituto de Fisiologia Celular, Universidad Nacional Autónoma de México, DF.

出版信息

Arch Biochem Biophys. 1989 Aug 1;272(2):332-43. doi: 10.1016/0003-9861(89)90227-0.

Abstract

Cytochrome c and cytochrome oxidase, in bovine heart submitochondrial particles and in their purified forms, were transferred to a ternary system that contained phospholipids (10 mg/ml toluene), the apolar solvent toluene, and water at concentrations of 13-15 microliters (high water) and 3 microliters (low water) per milliliter of toluene. When the enzymes were transferred back to an all water system, they exhibited full catalytic capacity. In the low water ternary system, cytochrome c could be reduced by ascorbate introduced via inverted micelles. Also in this system, cytochrome oxidase was reduced by ascorbate and cytochrome c but its oxidation was highly impaired. Data on the kinetics of reduction by ascorbate of cytochrome c and cytochrome oxidase under these conditions are presented. Cytochrome oxidase reduced in the organic solvent by ascorbate failed to form a complex with CO, but formed a complex with cyanide introduced via inverted micelles. The oxidized and the ascorbate-reduced cytochrome oxidase-cyanide complex exhibited a trough at 415 nm and a peak at 433 nm. The extent and rate of formation of the cyanide complex were higher with the reduced form of cytochrome oxidase. To achieve protein-protein interactions (cytochrome c-cytochrome oxidase) in the ternary system, it was necessary to extract the two proteins together. There was no functional interaction when they were extracted separately and mixed. In the high water ternary system reduced cytochrome oxidase was not detected, and it oxidized ascorbate at a higher rate than in the low water system; however, this rate was several orders of magnitude lower than in aqueous media.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验