Trovato Fabio, Tozzini Valentina
Istituto Nanoscienze del Cnr, NEST-Scuola Normale Superiore, Pisa, Italy; Center for Nanotechnology and Innovation@NEST-Istituto Italiano di Tecnologia, Piazza San Silvestro 12, 56127, Pisa, Italy.
Istituto Nanoscienze del Cnr, NEST-Scuola Normale Superiore, Pisa, Italy.
Biophys J. 2014 Dec 2;107(11):2579-91. doi: 10.1016/j.bpj.2014.09.043.
Recent experiments carried out in the dense cytoplasm of living cells have highlighted the importance of proteome composition and nonspecific intermolecular interactions in regulating macromolecule diffusion and organization. Despite this, the dependence of diffusion-interaction on physicochemical properties such as the degree of poly-dispersity and the balance between steric repulsion and nonspecific attraction among macromolecules was not systematically addressed. In this work, we study the problem of diffusion-interaction in the bacterial cytoplasm, combining theory and experimental data to build a minimal coarse-grained representation of the cytoplasm, which also includes, for the first time to our knowledge, the nucleoid. With stochastic molecular-dynamics simulations of a virtual cytoplasm we are able to track the single biomolecule motion, sizing from 3 to 80 nm, on submillisecond-long trajectories. We demonstrate that the size dependence of diffusion coefficients, anomalous exponents, and the effective viscosity experienced by biomolecules in the cytoplasm is fine-tuned by the intermolecular interactions. Accounting only for excluded volume in these potentials gives a weaker size-dependence than that expected from experimental data. On the contrary, adding nonspecific attraction in the range of 1-10 thermal energy units produces a stronger variation of the transport properties at growing biopolymer sizes. Normal and anomalous diffusive regimes emerge straightforwardly from the combination of high macromolecular concentration, poly-dispersity, stochasticity, and weak nonspecific interactions. As a result, small biopolymers experience a viscous cytoplasm, while the motion of big ones is jammed because the entanglements produced by the network of interactions and the entropic effects caused by poly-dispersity are stronger.
最近在活细胞的致密细胞质中进行的实验突出了蛋白质组组成和非特异性分子间相互作用在调节大分子扩散和组织方面的重要性。尽管如此,扩散相互作用对诸如多分散程度以及大分子之间空间排斥和非特异性吸引力平衡等物理化学性质的依赖性尚未得到系统研究。在这项工作中,我们研究细菌细胞质中的扩散相互作用问题,结合理论和实验数据构建细胞质的最小粗粒度表示,据我们所知,其中还首次包括类核。通过对虚拟细胞质进行随机分子动力学模拟,我们能够在亚毫秒级的轨迹上追踪大小从3到80纳米的单个生物分子的运动。我们证明,细胞质中生物分子所经历的扩散系数、反常指数和有效粘度的尺寸依赖性是由分子间相互作用微调的。在这些势中仅考虑排除体积会产生比实验数据预期更弱的尺寸依赖性。相反,在1 - 10个热能单位范围内添加非特异性吸引力会在生物聚合物尺寸增加时使传输性质产生更强的变化。高分子浓度、多分散性、随机性和弱非特异性相互作用相结合,直接产生了正常和反常扩散 regime。结果,小的生物聚合物会经历粘性细胞质,而大的生物聚合物的运动则会受阻,因为相互作用网络产生的缠结和多分散性引起的熵效应更强。