Prass Tobias M, Garidel Patrick, Blech Michaela, Schäfer Lars V
Center for Theoretical Chemistry, Ruhr University Bochum, D-44780 Bochum, Germany.
Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, PDB, D-88397 Biberach an der Riss, Germany.
J Chem Inf Model. 2023 Oct 9;63(19):6129-6140. doi: 10.1021/acs.jcim.3c00947. Epub 2023 Sep 27.
The computational prediction of the viscosity of dense protein solutions is highly desirable, for example, in the early development phase of high-concentration biopharmaceutical formulations where the material needed for experimental determination is typically limited. Here, we use large-scale atomistic molecular dynamics (MD) simulations with explicit solvation to predict the dynamic viscosities of solutions of a monoclonal IgG1 antibody (mAb) from the pressure fluctuations using a Green-Kubo approach. The viscosities at simulated mAb concentrations of 200 and 250 mg/mL are compared to the experimental values, which we measured with rotational rheometry. The computational viscosity of 24 mPa·s at the mAb concentration of 250 mg/mL matches the experimental value of 23 mPa·s obtained at a concentration of 213 mg/mL, indicating slightly different effective concentrations (or activities) in the MD simulations and in the experiments. This difference is assigned to a slight underestimation of the effective mAb-mAb interactions in the simulations, leading to a too loose dynamic mAb network that governs the viscosity. Taken together, this study demonstrates the feasibility of all-atom MD simulations for predicting the properties of dense mAb solutions and provides detailed microscopic insights into the underlying molecular interactions. At the same time, it also shows that there is room for further improvements and highlights challenges, such as the massive sampling required for computing collective properties of dense biomolecular solutions in the high-viscosity regime with reasonable statistical precision.
计算预测浓蛋白溶液的粘度非常必要,例如在高浓度生物制药制剂的早期开发阶段,此时用于实验测定的材料通常有限。在此,我们使用具有显式溶剂化的大规模原子分子动力学(MD)模拟,采用格林 - 库博方法从压力波动预测单克隆IgG1抗体(mAb)溶液的动态粘度。将模拟的mAb浓度为200和250 mg/mL时的粘度与我们用旋转流变仪测量的实验值进行比较。在mAb浓度为250 mg/mL时计算得到的粘度为24 mPa·s,与在浓度为213 mg/mL时获得的23 mPa·s的实验值相匹配,这表明在MD模拟和实验中的有效浓度(或活度)略有不同。这种差异归因于模拟中对有效mAb - mAb相互作用的轻微低估,导致控制粘度的动态mAb网络过于松散。综上所述,本研究证明了全原子MD模拟预测浓mAb溶液性质的可行性,并提供了对潜在分子相互作用的详细微观见解。同时,它也表明仍有进一步改进的空间,并突出了挑战,例如在高粘度区域以合理的统计精度计算浓生物分子溶液的集体性质所需的大量采样。