Lee BoBae, Han Lin, Frank Eliot H, Grodzinsky Alan J, Ortiz Christine
Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.
School of Biomedical Engineering, Science and Health Systems, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104, USA.
J Biomech. 2015 Jan 2;48(1):171-5. doi: 10.1016/j.jbiomech.2014.11.005. Epub 2014 Nov 12.
Dynamic nanomechanical properties of bovine bone marrow stromal cells (BMSCs) and their newly synthesized cartilage-like matrices were studied at nanometer scale deformation amplitudes. The increase in their dynamic modulus, |E(*)| (e.g., 2.4±0.4 kPa at 1 Hz to 9.7±0.2 kPa at 316 Hz at day 21, mean±SEM), and phase angle, δ, (e.g., 15±2° at 1 Hz to 74±1° at 316 Hz at day 21) with increasing frequency were attributed to the fluid flow induced poroelasticity, governed by both the newly synthesized matrix and the intracellular structures. The absence of culture duration dependence suggested that chondrogenesis of BMSCs had not yet resulted in the formation of a well-organized matrix with a hierarchical structure similar to cartilage. BMSC-matrix composites demonstrated different poro-viscoelastic frequency-dependent mechanical behavior and energy dissipation compared to chondrocyte-matrix composites due to differences in matrix molecular constituents, structure and cell properties. This study provides important insights into the design of optimal protocols for tissue-engineered cartilage products using chondrocytes and BMSCs.
在纳米尺度变形幅度下研究了牛骨髓间充质干细胞(BMSC)及其新合成的类软骨基质的动态纳米力学性能。它们的动态模量|E(*)|(例如,第21天在1 Hz时为2.4±0.4 kPa,在316 Hz时为9.7±0.2 kPa,平均值±标准误)和相角δ(例如,第21天在1 Hz时为15±2°,在316 Hz时为74±1°)随频率增加,这归因于由新合成的基质和细胞内结构共同控制的流体流动诱导的多孔弹性。不存在培养持续时间依赖性表明,BMSC的软骨形成尚未导致形成具有类似于软骨的分层结构的组织良好的基质。由于基质分子成分、结构和细胞特性的差异,与软骨细胞-基质复合材料相比,BMSC-基质复合材料表现出不同的多孔粘弹性频率依赖性力学行为和能量耗散。这项研究为使用软骨细胞和BMSC设计组织工程软骨产品的最佳方案提供了重要见解。