Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.
Biophys J. 2011 Apr 6;100(7):1846-54. doi: 10.1016/j.bpj.2011.02.031.
In this study, atomic force microscopy-based dynamic oscillatory and force-relaxation indentation was employed to quantify the time-dependent nanomechanics of native (untreated) and proteoglycan (PG)-depleted cartilage disks, including indentation modulus E(ind), force-relaxation time constant τ, magnitude of dynamic complex modulus |E(∗)|, phase angle δ between force and indentation depth, storage modulus E', and loss modulus E″. At ∼2 nm dynamic deformation amplitude, |E(∗)| increased significantly with frequency from 0.22 ± 0.02 MPa (1 Hz) to 0.77 ± 0.10 MPa (316 Hz), accompanied by an increase in δ (energy dissipation). At this length scale, the energy dissipation mechanisms were deconvoluted: the dynamic frequency dependence was primarily governed by the fluid-flow-induced poroelasticity, whereas the long-time force relaxation reflected flow-independent viscoelasticity. After PG depletion, the change in the frequency response of |E(∗)| and δ was consistent with an increase in cartilage local hydraulic permeability. Although untreated disks showed only slight dynamic amplitude-dependent behavior, PG-depleted disks showed great amplitude-enhanced energy dissipation, possibly due to additional viscoelastic mechanisms. Hence, in addition to functioning as a primary determinant of cartilage compressive stiffness and hydraulic permeability, the presence of aggrecan minimized the amplitude dependence of |E(∗)| at nanometer-scale deformation.
在这项研究中,基于原子力显微镜的动态振荡和力松弛压痕技术被用于量化天然(未经处理)和蛋白聚糖(PG)耗竭软骨盘的时变纳米力学特性,包括压痕模量 E(ind)、力松弛时间常数 τ、动态复模量 |E(∗)|的幅度、力与压痕深度之间的相位角 δ、储能模量 E'和损耗模量 E″。在约 2nm 的动态变形幅度下,|E(∗)|随频率从 0.22 ± 0.02MPa(1Hz)显著增加到 0.77 ± 0.10MPa(316Hz),同时 δ(能量耗散)增加。在这个长度尺度上,对能量耗散机制进行了反卷积:动态频率依赖性主要由流致多孔弹性决定,而长时间的力松弛则反映了与流动无关的粘弹性。PG 耗竭后,|E(∗)|和 δ 的频率响应变化与软骨局部水力渗透率的增加一致。尽管未经处理的软骨盘仅显示出轻微的动态幅度依赖性行为,但 PG 耗竭的软骨盘显示出较大的幅度增强的能量耗散,这可能是由于增加了额外的粘弹性机制。因此,除了作为软骨压缩刚度和水力渗透率的主要决定因素外,聚集蛋白聚糖的存在还最小化了 |E(∗)|在纳米级变形时的幅度依赖性。