Suppr超能文献

软骨的时变纳力学。

Time-dependent nanomechanics of cartilage.

机构信息

Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.

出版信息

Biophys J. 2011 Apr 6;100(7):1846-54. doi: 10.1016/j.bpj.2011.02.031.

Abstract

In this study, atomic force microscopy-based dynamic oscillatory and force-relaxation indentation was employed to quantify the time-dependent nanomechanics of native (untreated) and proteoglycan (PG)-depleted cartilage disks, including indentation modulus E(ind), force-relaxation time constant τ, magnitude of dynamic complex modulus |E(∗)|, phase angle δ between force and indentation depth, storage modulus E', and loss modulus E″. At ∼2 nm dynamic deformation amplitude, |E(∗)| increased significantly with frequency from 0.22 ± 0.02 MPa (1 Hz) to 0.77 ± 0.10 MPa (316 Hz), accompanied by an increase in δ (energy dissipation). At this length scale, the energy dissipation mechanisms were deconvoluted: the dynamic frequency dependence was primarily governed by the fluid-flow-induced poroelasticity, whereas the long-time force relaxation reflected flow-independent viscoelasticity. After PG depletion, the change in the frequency response of |E(∗)| and δ was consistent with an increase in cartilage local hydraulic permeability. Although untreated disks showed only slight dynamic amplitude-dependent behavior, PG-depleted disks showed great amplitude-enhanced energy dissipation, possibly due to additional viscoelastic mechanisms. Hence, in addition to functioning as a primary determinant of cartilage compressive stiffness and hydraulic permeability, the presence of aggrecan minimized the amplitude dependence of |E(∗)| at nanometer-scale deformation.

摘要

在这项研究中,基于原子力显微镜的动态振荡和力松弛压痕技术被用于量化天然(未经处理)和蛋白聚糖(PG)耗竭软骨盘的时变纳米力学特性,包括压痕模量 E(ind)、力松弛时间常数 τ、动态复模量 |E(∗)|的幅度、力与压痕深度之间的相位角 δ、储能模量 E'和损耗模量 E″。在约 2nm 的动态变形幅度下,|E(∗)|随频率从 0.22 ± 0.02MPa(1Hz)显著增加到 0.77 ± 0.10MPa(316Hz),同时 δ(能量耗散)增加。在这个长度尺度上,对能量耗散机制进行了反卷积:动态频率依赖性主要由流致多孔弹性决定,而长时间的力松弛则反映了与流动无关的粘弹性。PG 耗竭后,|E(∗)|和 δ 的频率响应变化与软骨局部水力渗透率的增加一致。尽管未经处理的软骨盘仅显示出轻微的动态幅度依赖性行为,但 PG 耗竭的软骨盘显示出较大的幅度增强的能量耗散,这可能是由于增加了额外的粘弹性机制。因此,除了作为软骨压缩刚度和水力渗透率的主要决定因素外,聚集蛋白聚糖的存在还最小化了 |E(∗)|在纳米级变形时的幅度依赖性。

相似文献

1
Time-dependent nanomechanics of cartilage.
Biophys J. 2011 Apr 6;100(7):1846-54. doi: 10.1016/j.bpj.2011.02.031.
2
Poroelasticity of cartilage at the nanoscale.
Biophys J. 2011 Nov 2;101(9):2304-13. doi: 10.1016/j.bpj.2011.09.011. Epub 2011 Nov 1.
3
Dynamic nanomechanics of individual bone marrow stromal cells and cell-matrix composites during chondrogenic differentiation.
J Biomech. 2015 Jan 2;48(1):171-5. doi: 10.1016/j.jbiomech.2014.11.005. Epub 2014 Nov 12.
5
Aggrecan nanoscale solid-fluid interactions are a primary determinant of cartilage dynamic mechanical properties.
ACS Nano. 2015 Mar 24;9(3):2614-25. doi: 10.1021/nn5062707. Epub 2015 Mar 13.
7
Aggrecan: Approaches to Study Biophysical and Biomechanical Properties.
Methods Mol Biol. 2022;2303:209-226. doi: 10.1007/978-1-0716-1398-6_17.
9
Viscoelastic properties of bovine articular cartilage attached to subchondral bone at high frequencies.
BMC Musculoskelet Disord. 2009 Jun 4;10:61. doi: 10.1186/1471-2474-10-61.

引用本文的文献

1
Structure, Mechanics, and Mechanobiology of Fibrocartilage Pericellular Matrix Mediated by Type V Collagen.
Adv Sci (Weinh). 2025 Aug;12(32):e14750. doi: 10.1002/advs.202414750. Epub 2025 May 23.
2
Viscoelasticity Can Be Tuned Through Covalent Incorporation of Chondroitin Sulphate in Allylated Gelatin Hydrogels.
Macromol Biosci. 2025 Jun;25(6):e2400422. doi: 10.1002/mabi.202400422. Epub 2025 Mar 19.
3
Antiviral drugs prolong survival in murine recessive dystrophic epidermolysis bullosa.
EMBO Mol Med. 2024 Apr;16(4):870-884. doi: 10.1038/s44321-024-00048-8. Epub 2024 Mar 10.
4
Material properties in regenerating axolotl limbs using inverse finite element analysis.
J Mech Behav Biomed Mater. 2024 Feb;150:106341. doi: 10.1016/j.jmbbm.2023.106341. Epub 2023 Dec 24.
5
Design principles in mechanically adaptable biomaterials for repairing annulus fibrosus rupture: A review.
Bioact Mater. 2023 Sep 4;31:422-439. doi: 10.1016/j.bioactmat.2023.08.012. eCollection 2024 Jan.
6
Poroelastic behavior and water permeability of human skin at the nanoscale.
PNAS Nexus. 2023 Aug 22;2(8):pgad240. doi: 10.1093/pnasnexus/pgad240. eCollection 2023 Aug.
7
Gelatin-modified 3D printed PGS elastic hierarchical porous scaffold for cartilage regeneration.
APL Bioeng. 2023 Aug 4;7(3):036105. doi: 10.1063/5.0152151. eCollection 2023 Sep.
8
Rapid specialization and stiffening of the primitive matrix in developing articular cartilage and meniscus.
Acta Biomater. 2023 Sep 15;168:235-251. doi: 10.1016/j.actbio.2023.06.047. Epub 2023 Jul 4.
9
Understanding the Influence of Local Physical Stimuli on Chondrocyte Behavior.
Adv Exp Med Biol. 2023;1402:31-44. doi: 10.1007/978-3-031-25588-5_2.
10
High frame rate deformation analysis of knee cartilage by spiral dualMRI and relaxation mapping.
Magn Reson Med. 2023 Feb;89(2):694-709. doi: 10.1002/mrm.29487. Epub 2022 Oct 27.

本文引用的文献

1
Single-molecule force spectroscopy of cartilage aggrecan self-adhesion.
Biophys J. 2010 Nov 17;99(10):3498-504. doi: 10.1016/j.bpj.2010.09.002.
4
Dynamic mechanical properties of the tissue-engineered matrix associated with individual chondrocytes.
J Biomech. 2010 Feb 10;43(3):469-76. doi: 10.1016/j.jbiomech.2009.09.053. Epub 2009 Nov 3.
6
A fiber reinforced poroelastic model of nanoindentation of porcine costal cartilage: a combined experimental and finite element approach.
J Mech Behav Biomed Mater. 2009 Aug;2(4):326-37; discussion 337-8. doi: 10.1016/j.jmbbm.2008.09.003. Epub 2008 Nov 1.
7
Cartilage stress-relaxation proceeds slower at higher compressive strains.
Arch Biochem Biophys. 2009 Mar 1;483(1):75-80. doi: 10.1016/j.abb.2008.11.029. Epub 2008 Dec 24.
8
Cartilage aggrecan can undergo self-adhesion.
Biophys J. 2008 Nov 15;95(10):4862-70. doi: 10.1529/biophysj.107.128389. Epub 2008 Aug 1.
9
Nanoscale shear deformation mechanisms of opposing cartilage aggrecan macromolecules.
Biophys J. 2007 Sep 1;93(5):L23-5. doi: 10.1529/biophysj.107.114025. Epub 2007 Jun 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验