Suppr超能文献

软骨细胞外基质的纳米力学

Nanomechanics of the Cartilage Extracellular Matrix.

作者信息

Han Lin, Grodzinsky Alan J, Ortiz Christine

机构信息

Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139.

出版信息

Annu Rev Mater Res. 2011 Jul 1;41:133-168. doi: 10.1146/annurev-matsci-062910-100431.

Abstract

Cartilage is a hydrated biomacromolecular fiber composite located at the ends of long bones that enables proper joint lubrication, articulation, loading, and energy dissipation. Degradation of extracellular matrix molecular components and changes in their nanoscale structure greatly influence the macroscale behavior of the tissue and result in dysfunction with age, injury, and diseases such as osteoarthritis. Here, the application of the field of nanomechanics to cartilage is reviewed. Nanomechanics involves the measurement and prediction of nanoscale forces and displacements, intra- and intermolecular interactions, spatially varying mechanical properties, and other mechanical phenomena existing at small length scales. Experimental nanomechanics and theoretical nanomechanics have been applied to cartilage at varying levels of material complexity, e.g., nanoscale properties of intact tissue, the matrix associated with single cells, biomimetic molecular assemblies, and individual extracellular matrix biomolecules (such as aggrecan, collagen, and hyaluronan). These studies have contributed to establishing a fundamental mechanism-based understanding of native and engineered cartilage tissue function, quality, and pathology.

摘要

软骨是一种位于长骨末端的水合生物大分子纤维复合材料,它能实现适当的关节润滑、关节活动、负荷承载和能量耗散。细胞外基质分子成分的降解及其纳米级结构的变化极大地影响了组织的宏观行为,并随着年龄增长、损伤以及骨关节炎等疾病而导致功能障碍。在此,对纳米力学领域在软骨方面的应用进行综述。纳米力学涉及纳米级力和位移的测量与预测、分子内和分子间相互作用、空间变化的力学性能以及在小长度尺度上存在的其他力学现象。实验纳米力学和理论纳米力学已在不同材料复杂程度下应用于软骨,例如完整组织的纳米级特性、与单个细胞相关的基质、仿生分子组装体以及单个细胞外基质生物分子(如聚集蛋白聚糖、胶原蛋白和透明质酸)。这些研究有助于建立基于基本机制的对天然和工程化软骨组织功能、质量及病理学的理解。

相似文献

1
Nanomechanics of the Cartilage Extracellular Matrix.
Annu Rev Mater Res. 2011 Jul 1;41:133-168. doi: 10.1146/annurev-matsci-062910-100431.
2
Aggrecan nanoscale solid-fluid interactions are a primary determinant of cartilage dynamic mechanical properties.
ACS Nano. 2015 Mar 24;9(3):2614-25. doi: 10.1021/nn5062707. Epub 2015 Mar 13.
3
4
Nanomechanics of Aggrecan: A New Perspective on Cartilage Biomechanics, Disease and Regeneration.
Adv Exp Med Biol. 2023;1402:69-82. doi: 10.1007/978-3-031-25588-5_5.
5
Decorin Regulates the Aggrecan Network Integrity and Biomechanical Functions of Cartilage Extracellular Matrix.
ACS Nano. 2019 Oct 22;13(10):11320-11333. doi: 10.1021/acsnano.9b04477. Epub 2019 Oct 1.
7
Reversible changes in the 3D collagen fibril architecture during cyclic loading of healthy and degraded cartilage.
Acta Biomater. 2021 Dec;136:314-326. doi: 10.1016/j.actbio.2021.09.037. Epub 2021 Sep 24.
8
Wide bandwidth nanomechanical assessment of murine cartilage reveals protection of aggrecan knock-in mice from joint-overuse.
J Biomech. 2016 Jun 14;49(9):1634-1640. doi: 10.1016/j.jbiomech.2016.03.055. Epub 2016 Apr 3.
10
Biomimetic molecules lower catabolic expression and prevent chondroitin sulfate degradation in an osteoarthritic ex vivo model.
ACS Biomater Sci Eng. 2016 Feb 8;2(2):241-250. doi: 10.1021/acsbiomaterials.5b00458. Epub 2015 Dec 23.

引用本文的文献

3
Biomimetic Proteoglycans Strengthen the Pericellular Matrix of Normal and Osteoarthritic Human Cartilage.
ACS Biomater Sci Eng. 2024 Sep 9;10(9):5617-5623. doi: 10.1021/acsbiomaterials.4c00813. Epub 2024 Aug 12.
5
Atomic force microscopy characterization of white and beige adipocyte differentiation.
In Vitro Cell Dev Biol Anim. 2024 Sep;60(8):842-852. doi: 10.1007/s11626-024-00925-z. Epub 2024 Jun 4.
6
Hsa_circular RNA_0045474 Facilitates Osteoarthritis Via Modulating microRNA-485-3p and Augmenting Transcription Factor 4.
Mol Biotechnol. 2024 May;66(5):1174-1187. doi: 10.1007/s12033-023-01019-z. Epub 2024 Jan 11.
7
Chondroitin sulfate, dermatan sulfate, and hyaluronic acid differentially modify the biophysical properties of collagen-based hydrogels.
Acta Biomater. 2024 Jan 15;174:116-126. doi: 10.1016/j.actbio.2023.12.018. Epub 2023 Dec 14.
8
The impact of vascular volume fraction and compressibility of the interstitial matrix on vascularised poroelastic tissues.
Biomech Model Mechanobiol. 2023 Dec;22(6):1901-1917. doi: 10.1007/s10237-023-01742-1. Epub 2023 Aug 17.
9
Rapid specialization and stiffening of the primitive matrix in developing articular cartilage and meniscus.
Acta Biomater. 2023 Sep 15;168:235-251. doi: 10.1016/j.actbio.2023.06.047. Epub 2023 Jul 4.
10
Stiffened fibre-like microenvironment based on patterned equidistant micropillars directs chondrocyte hypertrophy.
Mater Today Bio. 2023 May 27;20:100682. doi: 10.1016/j.mtbio.2023.100682. eCollection 2023 Jun.

本文引用的文献

2
Review of Instrumented Indentation.
J Res Natl Inst Stand Technol. 2003 Aug 1;108(4):249-65. doi: 10.6028/jres.108.024. Print 2003 Jul-Aug.
3
Time-dependent nanomechanics of cartilage.
Biophys J. 2011 Apr 6;100(7):1846-54. doi: 10.1016/j.bpj.2011.02.031.
4
The role of the cartilage matrix in osteoarthritis.
Nat Rev Rheumatol. 2011 Jan;7(1):50-6. doi: 10.1038/nrrheum.2010.198. Epub 2010 Nov 30.
5
Single-molecule force spectroscopy of cartilage aggrecan self-adhesion.
Biophys J. 2010 Nov 17;99(10):3498-504. doi: 10.1016/j.bpj.2010.09.002.
7
Nanotechnology: improving clinical testing?
Clin Chem. 2010 Sep;56(9):1384-9. doi: 10.1373/clinchem.2009.138750.
8
Adult bone marrow stromal cell-based tissue-engineered aggrecan exhibits ultrastructure and nanomechanical properties superior to native cartilage.
Osteoarthritis Cartilage. 2010 Nov;18(11):1477-86. doi: 10.1016/j.joca.2010.07.015. Epub 2010 Aug 6.
9
Massively parallel detection of gene expression in single cells using subnanolitre wells.
Lab Chip. 2010 Sep 21;10(18):2334-7. doi: 10.1039/c004847j. Epub 2010 Aug 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验