Ba Demba, Babadi Behtash, Purdon Patrick L, Brown Emery N
Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139; Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA 02114;
Department of Electrical and Computer Engineering, University of Maryland, College Park, MD 20740;
Proc Natl Acad Sci U S A. 2014 Dec 16;111(50):E5336-45. doi: 10.1073/pnas.1320637111. Epub 2014 Dec 2.
Classical nonparametric spectral analysis uses sliding windows to capture the dynamic nature of most real-world time series. This universally accepted approach fails to exploit the temporal continuity in the data and is not well-suited for signals with highly structured time-frequency representations. For a time series whose time-varying mean is the superposition of a small number of oscillatory components, we formulate nonparametric batch spectral analysis as a Bayesian estimation problem. We introduce prior distributions on the time-frequency plane that yield maximum a posteriori (MAP) spectral estimates that are continuous in time yet sparse in frequency. Our spectral decomposition procedure, termed spectrotemporal pursuit, can be efficiently computed using an iteratively reweighted least-squares algorithm and scales well with typical data lengths. We show that spectrotemporal pursuit works by applying to the time series a set of data-derived filters. Using a link between Gaussian mixture models, l1 minimization, and the expectation-maximization algorithm, we prove that spectrotemporal pursuit converges to the global MAP estimate. We illustrate our technique on simulated and real human EEG data as well as on human neural spiking activity recorded during loss of consciousness induced by the anesthetic propofol. For the EEG data, our technique yields significantly denoised spectral estimates that have significantly higher time and frequency resolution than multitaper spectral estimates. For the neural spiking data, we obtain a new spectral representation of neuronal firing rates. Spectrotemporal pursuit offers a robust spectral decomposition framework that is a principled alternative to existing methods for decomposing time series into a small number of smooth oscillatory components.
经典的非参数谱分析使用滑动窗口来捕捉大多数现实世界时间序列的动态特性。这种被广泛接受的方法未能利用数据中的时间连续性,并且不太适合具有高度结构化时频表示的信号。对于一个时变均值是少量振荡成分叠加的时间序列,我们将非参数批谱分析表述为一个贝叶斯估计问题。我们在时频平面上引入先验分布,从而得到在时间上连续但在频率上稀疏的最大后验(MAP)谱估计。我们的谱分解过程,称为谱时追踪,可以使用迭代加权最小二乘算法高效计算,并且能很好地适应典型的数据长度。我们表明谱时追踪通过将一组数据驱动的滤波器应用于时间序列来起作用。利用高斯混合模型、l1最小化和期望最大化算法之间的联系,我们证明谱时追踪收敛到全局MAP估计。我们在模拟和真实的人类脑电图(EEG)数据以及在丙泊酚麻醉诱导的意识丧失期间记录的人类神经尖峰活动上展示了我们的技术。对于EEG数据,我们的技术产生了显著去噪的谱估计,其时间和频率分辨率明显高于多 taper 谱估计。对于神经尖峰数据,我们获得了神经元放电率的一种新的谱表示。谱时追踪提供了一个强大的谱分解框架,是将时间序列分解为少量平滑振荡成分的现有方法的一个有原则的替代方法。