Babadi Behtash, Ba Demba, Purdon Patrick L, Brown Emery N
Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139 ; Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston, MA 02114.
Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139 ; Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston, MA 02114 ; Harvard-MIT Division of Health, Sciences and Technology.
IEEE Trans Signal Process. 2013 Oct 30;62(1):183-195. doi: 10.1109/TSP.2013.2287685. Epub 2014 Jan 1.
In this paper, we study the theoretical properties of a class of iteratively re-weighted least squares (IRLS) algorithms for sparse signal recovery in the presence of noise. We demonstrate a one-to-one correspondence between this class of algorithms and a class of Expectation-Maximization (EM) algorithms for constrained maximum likelihood estimation under a Gaussian scale mixture (GSM) distribution. The IRLS algorithms we consider are parametrized by 0 < ≤ 1 and > 0. The EM formalism, as well as the connection to GSMs, allow us to establish that the IRLS(, ) algorithms minimize -smooth versions of the ℓ 'norms'. We leverage EM theory to show that, for each 0 < ≤ 1, the limit points of the sequence of IRLS(, ) iterates are stationary point of the -smooth ℓ 'norm' minimization problem on the constraint set. Finally, we employ techniques from Compressive sampling (CS) theory to show that the class of IRLS(, ) algorithms is stable for each 0 < ≤ 1, if the limit point of the iterates coincides the global minimizer. For the case = 1, we show that the algorithm converges exponentially fast to a neighborhood of the stationary point, and outline its generalization to super-exponential convergence for < 1. We demonstrate our claims via simulation experiments. The simplicity of IRLS, along with the theoretical guarantees provided in this contribution, make a compelling case for its adoption as a standard tool for sparse signal recovery.
在本文中,我们研究了一类用于有噪声情况下稀疏信号恢复的迭代重加权最小二乘(IRLS)算法的理论性质。我们证明了这类算法与一类用于高斯尺度混合(GSM)分布下约束最大似然估计的期望最大化(EM)算法之间存在一一对应关系。我们考虑的IRLS算法由0 < ≤ 1和 > 0参数化。EM形式主义以及与GSM的联系,使我们能够确定IRLS(, )算法能最小化 -光滑版本的ℓ '范数'。我们利用EM理论表明,对于每个0 < ≤ 1,IRLS(, )迭代序列的极限点是约束集上 -光滑ℓ '范数'最小化问题的驻点。最后,我们采用压缩采样(CS)理论中的技术表明,如果迭代的极限点与全局极小值点重合,那么对于每个0 < ≤ 1,IRLS(, )算法类是稳定的。对于 = 1的情况,我们表明该算法以指数速度快速收敛到驻点的一个邻域,并概述了其对于 < 1时超指数收敛的推广。我们通过仿真实验验证了我们的断言。IRLS的简单性以及本论文所提供的理论保证,使其成为稀疏信号恢复标准工具的一个极具吸引力的选择。