Suppr超能文献

用于阻塞性睡眠呼吸暂停的睡眠分期的状态空间和密度估计框架。

A State Space and Density Estimation Framework for Sleep Staging in Obstructive Sleep Apnea.

出版信息

IEEE Trans Biomed Eng. 2018 Jun;65(6):1201-1212. doi: 10.1109/TBME.2017.2702123. Epub 2017 May 8.

Abstract

OBJECTIVE

Although the importance of sleep is increasingly recognized, the lack of robust and efficient algorithms hinders scalable sleep assessment in healthy persons and those with sleep disorders. Polysomnography (PSG) and visual/manual scoring remain the gold standard in sleep evaluation, but more efficient/automated systems are needed. Most previous works have demonstrated algorithms in high agreement with the gold standard in healthy/normal (HN) individuals-not those with sleep disorders.

METHODS

This paper presents a statistical framework that automatically estimates whole-night sleep architecture in patients with obstructive sleep apnea (OSA)-the most common sleep disorder. Single-channel frontal electroencephalography was extracted from 65 HN/OSA sleep studies, and decomposed into 11 spectral features in 60 903 30 s sleep epochs. The algorithm leveraged kernel density estimation to generate stage-specific likelihoods, and a 5-state hidden Markov model to estimate per-night sleep architecture.

RESULTS

Comparisons to full PSG expert scoring revealed the algorithm was in fair agreement with the gold standard (median Cohen's kappa = 0.53). Further, analysis revealed modest decreases in median scoring agreement as OSA severity increased from HN (kappa = 0.63) to severe (kappa = 0.47). A separate implementation on HN data from the Physionet Sleep-EDF Database resulted in a median kappa = 0.65, further indicating the algorithm's broad applicability.

CONCLUSION

Results of this work indicate the proposed single-channel framework can emulate expert-level scoring of sleep architecture in OSA.

SIGNIFICANCE

Algorithms constructed to more accurately model physiological variability during sleep may help advance automated sleep assessment, for practical and general use in sleep medicine.

摘要

目的

尽管人们对睡眠的重要性认识日益提高,但缺乏强大且高效的算法,阻碍了健康人群和睡眠障碍人群进行可扩展的睡眠评估。多导睡眠图(PSG)和视觉/手动评分仍然是睡眠评估的金标准,但需要更高效/自动化的系统。以前的大多数工作都证明了在健康/正常(HN)个体中,算法与金标准高度一致,而不是在睡眠障碍个体中。

方法

本文提出了一种统计框架,可自动估计阻塞性睡眠呼吸暂停(OSA)患者的整夜睡眠结构 - 这是最常见的睡眠障碍。从 65 例 HN/OSA 睡眠研究中提取单通道额部脑电图,并在 60903 个 30 秒的睡眠时段中分解为 11 个光谱特征。该算法利用核密度估计生成特定阶段的似然性,并使用 5 状态隐马尔可夫模型估计每个夜晚的睡眠结构。

结果

与完整 PSG 专家评分的比较表明,该算法与金标准具有中等一致性(中位数 Cohen's kappa = 0.53)。进一步的分析表明,随着 OSA 严重程度从 HN(kappa = 0.63)增加到严重(kappa = 0.47),评分一致性的中位数略有下降。在 Physionet Sleep-EDF 数据库中对 HN 数据的单独实施导致中位数 kappa = 0.65,进一步表明该算法具有广泛的适用性。

结论

这项工作的结果表明,所提出的单通道框架可以模拟 OSA 中睡眠结构的专家评分。

意义

构建算法以更准确地模拟睡眠期间的生理变异性,可能有助于推进自动化睡眠评估,在睡眠医学中实际和广泛应用。

相似文献

引用本文的文献

本文引用的文献

8
Robust spectrotemporal decomposition by iteratively reweighted least squares.通过迭代加权最小二乘法进行稳健的频谱-时间分解
Proc Natl Acad Sci U S A. 2014 Dec 16;111(50):E5336-45. doi: 10.1073/pnas.1320637111. Epub 2014 Dec 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验