Das Proloy, He Mingjian, Purdon Patrick L
Stanford University, Palo Alto, CA, USA.
Harvard-MIT HST, Massachusetts Institute of Technology, Cambridge, MA, USA.
Conf Rec Asilomar Conf Signals Syst Comput. 2023 Oct-Nov;2023:1496-1499. doi: 10.1109/IEEECONF59524.2023.10476951.
During cognitive tasks, the elicited brain responses that are time-locked to the stimulus presentation are manifested in electroencephalogram (EEG) as Event Related Potentials (ERPs). In general, ERPs are signals embedded in the background of much stronger neural oscillations, and thus they are traditionally extracted by averaging hundreds of trial responses so that the neural oscillations can cancel out each other. However, often in cognitive science experiments, it is difficult to administer large number of trials due to physical constraints. Additionally, these excessive averaging can also blur fine structures of the ERPs signals, which might otherwise be indicative of various intrinsic factors. Here we propose to model the background oscillations using a novel oscillation state-space representation and identify their time-traces in a data-driven way. This allows us to effectively separate the oscillations from the response signals of interest, thus improving the signal-to-noise of the evoked response, and eventually increasing trial fidelity. We also consider a random-walk like continuity constraint for the ERP waveforms to recover smooth, de-noised estimates. We employ a generalized expectation maximization algorithm for estimating the model parameters, and then infer the approximate posterior distribution of ERP waveforms. We demonstrate the reduced reliance of our proposed ERP extraction technique via a simulation study. Finally, we showcase how the extracted ERPs using our method can be more informative than the traditional average-based ERPs when analyzing EEG data in cognitive task settings with fewer trials.
在认知任务期间,与刺激呈现时间锁定的诱发脑反应在脑电图(EEG)中表现为事件相关电位(ERP)。一般来说,ERP是嵌入在更强神经振荡背景中的信号,因此传统上通过对数百次试验反应进行平均来提取,以便神经振荡相互抵消。然而,在认知科学实验中,由于物理限制,通常很难进行大量试验。此外,这些过度平均也会模糊ERP信号的精细结构,否则这些结构可能指示各种内在因素。在此,我们建议使用一种新颖的振荡状态空间表示对背景振荡进行建模,并以数据驱动的方式识别其时间轨迹。这使我们能够有效地将振荡与感兴趣的响应信号分离,从而提高诱发反应的信噪比,并最终提高试验保真度。我们还考虑对ERP波形采用类似随机游走的连续性约束,以恢复平滑、去噪的估计值。我们采用广义期望最大化算法来估计模型参数,然后推断ERP波形的近似后验分布。我们通过模拟研究证明了我们提出的ERP提取技术的依赖性降低。最后,我们展示了在较少试验次数的认知任务设置中分析EEG数据时,使用我们的方法提取的ERP如何比传统的基于平均的ERP更具信息性。