Suppr超能文献

来自本地宿主和新宿主的粗厚鳗鲡线虫的转录组分析。

Transcriptome analyses of Anguillicola crassus from native and novel hosts.

作者信息

Heitlinger Emanuel, Taraschewski Horst, Weclawski Urszula, Gharbi Karim, Blaxter Mark

机构信息

Department for Molecular Parasitology, Institute for Biology, Humboldt University Berlin , Berlin , Germany.

Department of Ecology and Parasitology, Zoological Institute, Karlsruhe Institute for Technology , Karlsruhe , Germany.

出版信息

PeerJ. 2014 Nov 27;2:e684. doi: 10.7717/peerj.684. eCollection 2014.

Abstract

Anguillicola crassus is a swim bladder nematode of eels. The parasite is native to the Asian eel Anguilla japonica, but was introduced to Europe and the European eel Anguilla anguilla in the early 1980s. A Taiwanese source has been proposed for this introduction. In the new host in the recipient area, the parasite appears to be more pathogenic. As a reason for these differences, genetically fixed differences in infectivity and development between Taiwanese and European A.crassus have been described and disentangled from plasticity induced by different host environments. To explore whether transcriptional regulation is involved in these lifecycle differences, we have analysed a "common garden", cross infection experiment, using deep-sequencing transcriptomics. Surprisingly, in the face of clear phenotypic differences in life history traits, we identified no significant differences in gene expression between parasite populations or between experimental host species. From 120,000 SNPs identified in the transcriptome data we found that European A. crassus were not a genetic subset of the Taiwanese nematodes sampled. The loci that have the major contribution to the European-Taiwanese population differentiation show an enrichment of synonymous and non-coding polymorphism. This argues against positive selection in population differentiation. However, genes involved in protein processing in the endoplasmatic reticulum membrane and genes bearing secretion signal sequences were enriched in the set of genes most differentiated between European and Taiwanese A. crassus. These genes could be a source for the phenotypically visible genetically fixed differences between European and Taiwanese A. crassus.

摘要

粗厚鳗蛔线虫是鳗鱼的一种鳔线虫。该寄生虫原产于亚洲鳗鱼日本鳗鲡,但在20世纪80年代初被引入欧洲并感染欧洲鳗鱼欧洲鳗鲡。有一种说法认为其引入源来自台湾。在新宿主所在的接受区域,这种寄生虫似乎更具致病性。作为这些差异的一个原因,已经描述了台湾和欧洲的粗厚鳗蛔线虫在感染性和发育方面的遗传固定差异,并将其与不同宿主环境诱导的可塑性区分开来。为了探究转录调控是否参与了这些生命周期差异,我们利用深度测序转录组学分析了一个“共同花园”交叉感染实验。令人惊讶的是,尽管在生活史特征上存在明显的表型差异,但我们并未发现寄生虫种群之间或实验宿主物种之间在基因表达上有显著差异。从转录组数据中鉴定出的120,000个单核苷酸多态性(SNP)中,我们发现欧洲的粗厚鳗蛔线虫并非所采样的台湾线虫的遗传子集。对欧洲 - 台湾种群分化起主要作用的基因座显示出同义多态性和非编码多态性的富集。这表明在种群分化过程中不存在正选择。然而,在内质网膜中参与蛋白质加工的基因以及带有分泌信号序列的基因在欧洲和台湾的粗厚鳗蛔线虫之间差异最大的基因集中富集。这些基因可能是欧洲和台湾的粗厚鳗蛔线虫在表型上可见的遗传固定差异的来源。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2baf/4250067/bee301dd6c51/peerj-02-684-g001.jpg

相似文献

1
Transcriptome analyses of Anguillicola crassus from native and novel hosts.
PeerJ. 2014 Nov 27;2:e684. doi: 10.7717/peerj.684. eCollection 2014.
3
The transcriptome of the invasive eel swimbladder nematode parasite Anguillicola crassus.
BMC Genomics. 2013 Feb 8;14:87. doi: 10.1186/1471-2164-14-87.
5
Mutual adaptations between hosts and parasites determine stress levels in eels.
Int J Parasitol Parasites Wildl. 2021 Feb 20;14:179-184. doi: 10.1016/j.ijppaw.2021.02.001. eCollection 2021 Apr.

引用本文的文献

1
Gene expression response to a nematode parasite in novel and native eel hosts.
Ecol Evol. 2019 Oct 21;9(23):13069-13084. doi: 10.1002/ece3.5728. eCollection 2019 Dec.
3
Perusal of parasitic nematode 'omics in the post-genomic era.
Mol Biochem Parasitol. 2017 Jul;215:11-22. doi: 10.1016/j.molbiopara.2016.11.003. Epub 2016 Nov 22.
4
Assembly, Assessment, and Availability of De novo Generated Eukaryotic Transcriptomes.
Front Genet. 2016 Jan 11;6:361. doi: 10.3389/fgene.2015.00361. eCollection 2015.

本文引用的文献

1
PARASITE-MEDIATED SELECTION AGAINST INBRED SOAY SHEEP IN A FREE-LIVING ISLAND POPULATON.
Evolution. 1999 Aug;53(4):1259-1267. doi: 10.1111/j.1558-5646.1999.tb04538.x.
2
ESTIMATING F-STATISTICS FOR THE ANALYSIS OF POPULATION STRUCTURE.
Evolution. 1984 Nov;38(6):1358-1370. doi: 10.1111/j.1558-5646.1984.tb05657.x.
3
The genetical structure of populations.
Ann Eugen. 1951 Mar;15(4):323-54. doi: 10.1111/j.1469-1809.1949.tb02451.x.
4
afterParty: turning raw transcriptomes into permanent resources.
BMC Bioinformatics. 2013 Oct 7;14:301. doi: 10.1186/1471-2105-14-301.
6
The transcriptome of the invasive eel swimbladder nematode parasite Anguillicola crassus.
BMC Genomics. 2013 Feb 8;14:87. doi: 10.1186/1471-2164-14-87.
8
Fast gapped-read alignment with Bowtie 2.
Nat Methods. 2012 Mar 4;9(4):357-9. doi: 10.1038/nmeth.1923.
9
RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome.
BMC Bioinformatics. 2011 Aug 4;12:323. doi: 10.1186/1471-2105-12-323.
10
Full-length transcriptome assembly from RNA-Seq data without a reference genome.
Nat Biotechnol. 2011 May 15;29(7):644-52. doi: 10.1038/nbt.1883.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验