Wu Yibing, Canturk Belgin, Jo Hyunil, Ma Chunlong, Gianti Eleonora, Klein Michael L, Pinto Lawrence H, Lamb Robert A, Fiorin Giacomo, Wang Jun, DeGrado William F
Department of Pharmaceutical Chemistry, University of California , Mission Bay Box 3122, San Francisco, California 94158, United States.
J Am Chem Soc. 2014 Dec 31;136(52):17987-95. doi: 10.1021/ja508461m. Epub 2014 Dec 18.
Influenza virus infections lead to numerous deaths and millions of hospitalizations each year. One challenge facing anti-influenza drug development is the heterogeneity of the circulating influenza viruses, which comprise several strains with variable susceptibility to antiviral drugs. For example, the wild-type (WT) influenza A viruses, such as the seasonal H1N1, tend to be sensitive to antiviral drugs, amantadine and rimantadine, while the S31N mutant viruses, such as the pandemic 2009 H1N1 (H1N1pdm09) and seasonal H3N2, are resistant to this class of drugs. Thus, drugs targeting both WT and the S31N mutant are highly desired. We report our design of a novel class of dual inhibitors along with their ion channel blockage and antiviral activities. The potency of the most active compound 11 in inhibiting WT and the S31N mutant influenza viruses is comparable with that of amantadine in inhibiting WT influenza virus. Solution NMR studies and molecular dynamics (MD) simulations of drug-M2 interactions supported our design hypothesis: namely, the dual inhibitor binds in the WT M2 channel with an aromatic group facing down toward the C-terminus, while the same drug binds in the S31N M2 channel with its aromatic group facing up toward the N-terminus. The flip-flop mode of drug binding correlates with the structure-activity relationship (SAR) and has paved the way for the next round of rational design of broad-spectrum antiviral drugs.
每年,流感病毒感染导致众多人死亡,数百万人住院。抗流感药物研发面临的一个挑战是流行的流感病毒具有异质性,其中包含几种对抗病毒药物敏感性不同的毒株。例如,野生型(WT)甲型流感病毒,如季节性H1N1,往往对抗病毒药物金刚烷胺和金刚乙胺敏感,而S31N突变病毒,如2009年大流行H1N1(H1N1pdm09)和季节性H3N2,则对这类药物耐药。因此,非常需要同时针对野生型和S31N突变体的药物。我们报告了一类新型双重抑制剂的设计及其离子通道阻断和抗病毒活性。最具活性的化合物11抑制野生型和S31N突变型流感病毒的效力与金刚烷胺抑制野生型流感病毒的效力相当。药物与M2相互作用的溶液核磁共振研究和分子动力学(MD)模拟支持了我们的设计假设:即双重抑制剂在野生型M2通道中结合时,芳香基团朝向C末端向下,而同一药物在S31N M2通道中结合时,其芳香基团朝向N末端向上。药物结合的翻转模式与构效关系(SAR)相关,并为下一轮广谱抗病毒药物的合理设计铺平了道路。