Suppr超能文献

应用贝叶斯信念网络分析通过磁共振成像确定颞下颌关节紊乱病的进展情况。

Bayesian belief network analysis applied to determine the progression of temporomandibular disorders using MRI.

作者信息

Iwasaki H

机构信息

Support Office of Frontier Oral Science in Faculty of Dentistry, Institute of Health Bioscience, Graduate School, The University of Tokushima, Tokushima, Japan.

出版信息

Dentomaxillofac Radiol. 2015;44(4):20140279. doi: 10.1259/dmfr.20140279. Epub 2014 Dec 4.

Abstract

OBJECTIVES

This study investigated the applicability of a Bayesian belief network (BBN) to MR images to diagnose temporomandibular disorders (TMDs). Our aim was to determine the progression of TMDs, focusing on how each finding affects the other.

METHODS

We selected 1.5-T MRI findings (33 variables) and diagnoses (bone changes and disc displacement) of patients with TMD from 2007 to 2008. There were a total of 295 cases with 590 sides of temporomandibular joints (TMJs). The data were modified according to the research diagnostic criteria of TMD. We compared the accuracy of the BBN using 11 algorithms (necessary path condition, path condition, greedy search-and-score with Bayesian information criterion, Chow-Liu tree, Rebane-Pearl poly tree, tree augmented naïve Bayes model, maximum log likelihood, Akaike information criterion, minimum description length, K2 and C4.5), a multiple regression analysis and an artificial neural network using resubstitution validation and 10-fold cross-validation.

RESULTS

There were 191 TMJs (32.4%) with bone changes and 340 (57.6%) with articular disc displacement. The BBN path condition algorithm using resubstitution validation and 10-fold cross-validation was >99% accurate. However, the main advantage of a BBN is that it can represent the causal relationships between different findings and assign conditional probabilities, which can then be used to interpret the progression of TMD.

CONCLUSIONS

Osteoarthritic bone changes progressed from condyle to articular fossa and finally to mandibular bone contours. Disc displacement was directly related to severe bone changes. Early bone changes were not directly related to disc displacement. TMJ functional factors (condylar translation, bony space and disc form) and age mediated between bone changes and disc displacement.

摘要

目的

本研究探讨贝叶斯信念网络(BBN)在颞下颌关节紊乱病(TMD)的磁共振成像(MR)诊断中的适用性。我们的目的是确定TMD的进展情况,重点关注各项检查结果之间的相互影响。

方法

我们选取了2007年至2008年TMD患者的1.5-T磁共振成像检查结果(33个变量)以及诊断结果(骨质改变和盘移位)。共有295例患者,累及590侧颞下颌关节(TMJ)。数据根据TMD的研究诊断标准进行了修正。我们使用11种算法(必要路径条件、路径条件、带贝叶斯信息准则的贪婪搜索评分法、Chow-Liu树、Rebane-Pearl多树、树增强朴素贝叶斯模型、最大对数似然法、赤池信息准则、最小描述长度、K2和C4.5)、多元回归分析以及人工神经网络,通过重复替换验证和10折交叉验证来比较BBN的准确性。

结果

191侧TMJ(32.4%)有骨质改变,340侧(57.6%)有关节盘移位。使用重复替换验证和10折交叉验证的BBN路径条件算法准确率>99%。然而,BBN的主要优势在于它能够呈现不同检查结果之间的因果关系并赋予条件概率,进而用于解释TMD的进展。

结论

骨关节炎性骨质改变从髁突发展至关节窝,最终累及下颌骨轮廓。盘移位与严重的骨质改变直接相关。早期骨质改变与盘移位无直接关联。TMJ功能因素(髁突移位、骨间隙和盘形态)以及年龄在骨质改变和盘移位之间起中介作用。

相似文献

1
Bayesian belief network analysis applied to determine the progression of temporomandibular disorders using MRI.
Dentomaxillofac Radiol. 2015;44(4):20140279. doi: 10.1259/dmfr.20140279. Epub 2014 Dec 4.
6
Analysis of magnetic resonance imaging characteristics and pain in temporomandibular joints with and without degenerative changes of the condyle.
Int J Oral Maxillofac Surg. 2008 Jun;37(6):529-34. doi: 10.1016/j.ijom.2008.02.011. Epub 2008 Apr 28.
9
Bone marrow edema of the mandibular condyle related to internal derangement, osteoarthrosis, and joint effusion.
J Oral Maxillofac Surg. 2003 Jan;61(1):35-40. doi: 10.1053/joms.2003.50006.
10
Condyle-disk-fossa position and relationship to clinical signs and symptoms of temporomandibular disorders in women.
Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2009 Sep;108(3):e117-24. doi: 10.1016/j.tripleo.2009.04.034.

引用本文的文献

2
A Comprehensive Review of Artificial Intelligence Based Algorithms Regarding Temporomandibular Joint Related Diseases.
Diagnostics (Basel). 2023 Aug 18;13(16):2700. doi: 10.3390/diagnostics13162700.
3
Advancements in Dentistry with Artificial Intelligence: Current Clinical Applications and Future Perspectives.
Healthcare (Basel). 2022 Oct 31;10(11):2188. doi: 10.3390/healthcare10112188.
4
Diagnosis of temporomandibular disorders using artificial intelligence technologies: A systematic review and meta-analysis.
PLoS One. 2022 Aug 18;17(8):e0272715. doi: 10.1371/journal.pone.0272715. eCollection 2022.
5
Artificial Intelligence in the Diagnosis of Oral Diseases: Applications and Pitfalls.
Diagnostics (Basel). 2022 Apr 19;12(5):1029. doi: 10.3390/diagnostics12051029.
6
Automatic detection of anteriorly displaced temporomandibular joint discs on magnetic resonance images using a deep learning algorithm.
Dentomaxillofac Radiol. 2022 Mar 1;51(3):20210341. doi: 10.1259/dmfr.20210341. Epub 2021 Nov 29.

本文引用的文献

3
Relation between disk/condyle incoordination and joint morphological changes: a retrospective study on 268 TMJs.
Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2010 Sep;110(3):e34-40. doi: 10.1016/j.tripleo.2010.04.014. Epub 2010 Jul 24.
5
Relationship between appearance of a double contour on the mandibular condyle and the change in articular disc position after splint therapy.
Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2009 Oct;108(4):e30-4. doi: 10.1016/j.tripleo.2009.06.006. Epub 2009 Aug 29.
6
Development of a clinical decision model for thyroid nodules.
BMC Surg. 2009 Aug 10;9:12. doi: 10.1186/1471-2482-9-12.
7
Research diagnostic criteria for temporomandibular disorders (RDC/TMD): development of image analysis criteria and examiner reliability for image analysis.
Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2009 Jun;107(6):844-60. doi: 10.1016/j.tripleo.2009.02.023.
10
Association between magnetic resonance signs of temporomandibular joint effusion and disk displacement.
Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2009 Feb;107(2):266-71. doi: 10.1016/j.tripleo.2008.03.033. Epub 2008 Jul 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验