Suppr超能文献

使用深度学习算法自动检测磁共振图像上前移位的颞下颌关节盘。

Automatic detection of anteriorly displaced temporomandibular joint discs on magnetic resonance images using a deep learning algorithm.

机构信息

Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, PR China.

出版信息

Dentomaxillofac Radiol. 2022 Mar 1;51(3):20210341. doi: 10.1259/dmfr.20210341. Epub 2021 Nov 29.

Abstract

OBJECTIVES

This study aimed to develop models that can automatically detect anterior disc displacement (ADD) of the temporomandibular joint (TMJ) on MRIs before orthodontic treatment to reduce the risk of developing serious complications after treatment.

METHODS

We used 9009 sagittal MRI of the TMJ as input and constructed three sets of deep learning models to detect ADD automatically. Deep learning models were developed using a convolutional neural network (CNN) based on the ResNet architecture and the "Imagenet" database. Five-fold cross-validation, oversampling, and data augmentation techniques were applied to reduce the risk of overfitting the model. The accuracy and area under the curve (AUC) of the three models were compared.

RESULTS

The performance of the maximum open mouth position model was excellent with accuracy and AUC of 0.970 (±0.007) and 0.990 (±0.005), respectively. For closed mouth position models, the accuracy and AUC of diagnostic Criteria 1 were 0.863 (±0.008) and 0.922 (±0.009), respectively significantly higher than that of diagnostic Criteria 2 with 0.839 (±0.013) ( = 0.009) and AUC of 0.885 (±0.018) ( = 0.003). The classification activation heat map also improved our understanding of the models and visually displayed the areas that play a key role in the model recognition process.

CONCLUSION

Our CNN model resulted in high accuracy and AUC in detecting ADD and can therefore potentially be used by clinicians to assess ADD before orthodontic treatment, and hence improve treatment outcomes.

摘要

目的

本研究旨在开发能够在正畸治疗前自动检测颞下颌关节(TMJ)前盘移位(ADD)的模型,以降低治疗后发生严重并发症的风险。

方法

我们使用了 9009 例 TMJ 的矢状面 MRI 作为输入,并构建了三组深度学习模型来自动检测 ADD。深度学习模型是基于 ResNet 架构和“Imagenet”数据库使用卷积神经网络(CNN)开发的。采用五折交叉验证、过采样和数据增强技术来降低模型过拟合的风险。比较了三组模型的准确率和曲线下面积(AUC)。

结果

最大张口位模型的性能非常出色,准确率和 AUC 分别为 0.970(±0.007)和 0.990(±0.005)。对于闭口位模型,诊断标准 1 的准确率和 AUC 分别为 0.863(±0.008)和 0.922(±0.009),明显高于诊断标准 2 的 0.839(±0.013)(=0.009)和 AUC 的 0.885(±0.018)(=0.003)。分类激活热图也提高了我们对模型的理解,并直观地显示了模型识别过程中起关键作用的区域。

结论

我们的 CNN 模型在检测 ADD 方面具有较高的准确率和 AUC,因此可以由临床医生在正畸治疗前使用,从而改善治疗效果。

相似文献

1
Automatic detection of anteriorly displaced temporomandibular joint discs on magnetic resonance images using a deep learning algorithm.
Dentomaxillofac Radiol. 2022 Mar 1;51(3):20210341. doi: 10.1259/dmfr.20210341. Epub 2021 Nov 29.
3
Temporomandibular joint segmentation in MRI images using deep learning.
J Dent. 2022 Dec;127:104345. doi: 10.1016/j.jdent.2022.104345. Epub 2022 Nov 8.
4
Explainable deep learning-based clinical decision support engine for MRI-based automated diagnosis of temporomandibular joint anterior disk displacement.
Comput Methods Programs Biomed. 2023 May;233:107465. doi: 10.1016/j.cmpb.2023.107465. Epub 2023 Mar 5.
6
Automatic detection and visualization of temporomandibular joint effusion with deep neural network.
Sci Rep. 2024 Aug 14;14(1):18865. doi: 10.1038/s41598-024-69848-9.
9
10
Automatic segmentation of the temporomandibular joint disc on magnetic resonance images using a deep learning technique.
Dentomaxillofac Radiol. 2022 Jan 1;51(1):20210185. doi: 10.1259/dmfr.20210185. Epub 2021 Aug 4.

引用本文的文献

2
Deep learning-based automated diagnosis of temporomandibular joint anterior disc displacement and its clinical application.
Front Physiol. 2024 Dec 13;15:1445258. doi: 10.3389/fphys.2024.1445258. eCollection 2024.
4
Automated tooth segmentation in magnetic resonance scans using deep learning - A pilot study.
Dentomaxillofac Radiol. 2025 Jan 1;54(1):12-18. doi: 10.1093/dmfr/twae059.
7
A Comprehensive Review of Artificial Intelligence Based Algorithms Regarding Temporomandibular Joint Related Diseases.
Diagnostics (Basel). 2023 Aug 18;13(16):2700. doi: 10.3390/diagnostics13162700.

本文引用的文献

3
Systematic Comparison of Heatmapping Techniques in Deep Learning in the Context of Diabetic Retinopathy Lesion Detection.
Transl Vis Sci Technol. 2020 Dec 29;9(2):64. doi: 10.1167/tvst.9.2.64. eCollection 2020 Dec.
4
Detecting Large Vessel Occlusion at Multiphase CT Angiography by Using a Deep Convolutional Neural Network.
Radiology. 2020 Dec;297(3):640-649. doi: 10.1148/radiol.2020200334. Epub 2020 Sep 29.
5
Handling imbalanced medical image data: A deep-learning-based one-class classification approach.
Artif Intell Med. 2020 Aug;108:101935. doi: 10.1016/j.artmed.2020.101935. Epub 2020 Aug 7.
6
Imaging of the temporomandibular joint.
Clin Radiol. 2021 Jan;76(1):76.e21-76.e35. doi: 10.1016/j.crad.2020.06.020. Epub 2020 Jul 21.
7
Automated Detection of TMJ Osteoarthritis Based on Artificial Intelligence.
J Dent Res. 2020 Nov;99(12):1363-1367. doi: 10.1177/0022034520936950. Epub 2020 Jul 1.
8
The use of artificial intelligence, machine learning and deep learning in oncologic histopathology.
J Oral Pathol Med. 2020 Oct;49(9):849-856. doi: 10.1111/jop.13042. Epub 2020 Jun 15.
9
Effect of treatment with a full-occlusion biofeedback splint on sleep bruxism and TMD pain: a randomized controlled clinical trial.
Clin Oral Investig. 2020 Nov;24(11):4005-4018. doi: 10.1007/s00784-020-03270-z. Epub 2020 May 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验