Draksharapu Apparao, Boersma Arnold J, Leising Miriam, Meetsma Auke, Browne Wesley R, Roelfes Gerard
Stratingh Institute for Chemistry, Faculty of Mathematics and Natural Sciences, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands.
Dalton Trans. 2015 Feb 28;44(8):3647-55. doi: 10.1039/c4dt02733g.
The interaction between salmon testes DNA (st-DNA) and a series of Cu(II) polypyridyl complexes, i.e. [Cu(dmbpy)(NO3)2] (1) (dmbpy = 4,4'-dimethyl-2,2'-bipyridine), [Cu(bpy)(NO3)2] (2) (bpy = 2,2'-bipyridine), [Cu(phen)(NO3)2] (3) (phen = phenanthroline), [Cu(terpy)(NO3)2]·H2O (4) (terpy = 2,2':6',2″-terpyridine), [Cu(dpq)(NO3)2] (5) (dpq = dipyrido-[3,2-d:2',3'-f]-quinoxaline) and [Cu(dppz)(NO3)2] (6) (dppz = dipyrido[3,2-a:2',3'-c]phenazine) was studied by UV/Vis absorption, Circular Dichroism, Linear Dichroism, EPR, Raman and (UV and vis) resonance Raman spectroscopies and viscometry. These complexes catalyse enantioselective C-C bond forming reactions in water with DNA as the source of chirality. Complex 1 crystallizes as an inorganic polymer with nitrate ligands bridging the copper ions, which adopt essentially a distorted square pyramidal structure with a fifth bridging nitrate ligand at the axial position. Raman spectroscopy indicates that in solution the nitrate ligands in 1, 2, 3 and 4 are displaced by solvent (H2O). For complex 1, multiple supramolecular species are observed in the presence of st-DNA in contrast to the other complexes, which appear to interact relatively uniformly as a single species predominantly, when st-DNA is present. Overall the data suggest that complexes 1 and 2 engage primarily through groove binding with st-DNA while 5 and 6 undergo intercalation. For complexes 3 and 4 the data indicates that both groove binding and intercalation takes place, albeit primarily intercalation. Although it is tempting to conclude that the groove binders give highest ee and rate acceleration, it is proposed that the flexibility and dynamics in binding of Cu(II) complexes to DNA are key parameters that determine the outcome of the reaction. These findings provide insight into the complex supramolecular structure of these DNA-based catalysts.
通过紫外可见吸收光谱、圆二色光谱、线性二色光谱、电子顺磁共振光谱、拉曼光谱以及(紫外和可见)共振拉曼光谱和粘度测定法,研究了鲑鱼精巢DNA(st-DNA)与一系列铜(II)多吡啶配合物的相互作用,这些配合物分别为:[Cu(dmbpy)(NO3)2](1)(dmbpy = 4,4'-二甲基-2,2'-联吡啶)、[Cu(bpy)(NO3)2](2)(bpy = 2,2'-联吡啶)、[Cu(phen)(NO3)2](3)(phen = 菲咯啉)、[Cu(terpy)(NO3)2]·H2O(4)(terpy = 2,2':6',2″-三联吡啶)、[Cu(dpq)(NO3)2](5)(dpq = 二吡啶并-[3,2-d:2',3'-f]-喹喔啉)和[Cu(dppz)(NO3)2](6)(dppz = 二吡啶并[3,2-a:2',3'-c]吩嗪)。这些配合物在水中以DNA作为手性源催化对映选择性C-C键形成反应。配合物1以无机聚合物形式结晶,硝酸根配体桥连铜离子,铜离子基本上采用扭曲的四方锥结构,轴向位置有第五个桥连硝酸根配体。拉曼光谱表明,在溶液中,1、2、3和4中的硝酸根配体被溶剂(H2O)取代。对于配合物1,与其他配合物不同,在存在st-DNA的情况下观察到多种超分子物种,而其他配合物在存在st-DNA时似乎主要以单一物种相对均匀地相互作用。总体而言,数据表明配合物1和2主要通过沟槽结合与st-DNA相互作用,而5和6发生插入作用。对于配合物3和4,数据表明沟槽结合和插入作用都发生,尽管主要是插入作用。虽然很容易得出沟槽结合剂能给出最高对映体过量和速率加速的结论,但有人提出,铜(II)配合物与DNA结合的灵活性和动力学是决定反应结果的关键参数。这些发现为这些基于DNA的催化剂的复杂超分子结构提供了深入了解。