Suppr超能文献

鉴定加氏隐球菌在缺铁条件下表达的基因。

Identification of genes expressed by Cryptococcus gattii during iron deprivation.

作者信息

de Paula Daphine Ariadne Jesus, Rosa e Silva Lívia Kmetzsch, Staats Charley Christian, Vainstein Marilene H, Joanoni Ana Lúcia Pinto, Nakazato Luciano, Dutra Valéria

机构信息

Universidade Federal de Mato Grosso CuiabáMT Brazil Universidade Federal de Mato Grosso, Cuiabá, MT, Brazil.

Centro de Biotecnologia Universidade Federal do Rio Grande do Sul Porto AlegreRS Brazil Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.

出版信息

Braz J Microbiol. 2014 Oct 9;45(3):813-20. doi: 10.1590/s1517-83822014000300008. eCollection 2014.

Abstract

Cryptococcus neoformans and C. gattii are pathogenic yeasts that cause life-threatening diseases in humans and animals. Iron is an essential nutrient for virtually every organism as it functions as a cofactor in numerous essential enzymatic reactions. In the literature, the competition for iron between microbes and mammalian hosts during infection is well documented. In this study, we used representational difference analysis (RDA) in order to gain a better understanding of how C. gattii responds to iron starvation. A total of 15 and 29 genes were identified as having altered expression levels due to iron depletion after 3 h and 12 h, respectively. Of these, eight genes were identified in both libraries. The transcripts were related to many biological processes, such as cell cycle, ergosterol metabolism, cell wall organization, transportation, translation, cell respiration and the stress response. These data suggest a remodeling of C. gattii metabolism during conditions of iron deprivation.

摘要

新型隐球菌和格特隐球菌是致病性酵母,可在人类和动物中引发危及生命的疾病。铁是几乎所有生物体必需的营养物质,因为它在众多重要的酶促反应中作为辅助因子发挥作用。在文献中,关于感染期间微生物与哺乳动物宿主之间对铁的竞争已有充分记载。在本研究中,我们使用代表性差异分析(RDA)以便更好地了解格特隐球菌如何应对铁饥饿。分别在3小时和12小时后,共有15个和29个基因被鉴定为由于铁耗竭而表达水平发生改变。其中,在两个文库中都鉴定出了8个基因。这些转录本与许多生物学过程相关,如细胞周期、麦角固醇代谢、细胞壁组织、运输、翻译、细胞呼吸和应激反应。这些数据表明在铁缺乏条件下格特隐球菌代谢发生了重塑。

相似文献

1
Identification of genes expressed by Cryptococcus gattii during iron deprivation.
Braz J Microbiol. 2014 Oct 9;45(3):813-20. doi: 10.1590/s1517-83822014000300008. eCollection 2014.
3
Proteomic profiling of the influence of iron availability on Cryptococcus gattii.
J Proteome Res. 2012 Jan 1;11(1):189-205. doi: 10.1021/pr2005296. Epub 2011 Oct 26.
6
Fundamental niche prediction of the pathogenic yeasts Cryptococcus neoformans and Cryptococcus gattii in Europe.
Environ Microbiol. 2017 Oct;19(10):4318-4325. doi: 10.1111/1462-2920.13915. Epub 2017 Sep 15.
7
Long-term survival of Cryptococcus neoformans and Cryptococcus gattii in stored environmental samples from Colombia.
Rev Iberoam Micol. 2015 Jul-Sep;32(3):197-9. doi: 10.1016/j.riam.2014.06.007. Epub 2014 Nov 17.
8
Evasion of Innate Immune Responses by the Highly Virulent Cryptococcus gattii by Altering Capsule Glucuronoxylomannan Structure.
Front Cell Infect Microbiol. 2016 Jan 6;5:101. doi: 10.3389/fcimb.2015.00101. eCollection 2015.
9
Environmental distribution of Cryptococcus neoformans and C. gattii around the Mediterranean basin.
FEMS Yeast Res. 2016 Jun;16(4). doi: 10.1093/femsyr/fow045. Epub 2016 May 5.
10
Deubiquitinase Ubp5 Is Required for the Growth and Pathogenicity of Cryptococcus gattii.
PLoS One. 2016 Apr 6;11(4):e0153219. doi: 10.1371/journal.pone.0153219. eCollection 2016.

本文引用的文献

1
Proteomic profiling of the influence of iron availability on Cryptococcus gattii.
J Proteome Res. 2012 Jan 1;11(1):189-205. doi: 10.1021/pr2005296. Epub 2011 Oct 26.
4
Mitochondria and the regulation of hypervirulence in the fatal fungal outbreak on Vancouver Island.
Virulence. 2010 May-Jun;1(3):197-201. doi: 10.4161/viru.1.3.11053.
6
The iron-responsive, GATA-type transcription factor Cir1 influences mating in Cryptococcus neoformans.
Mol Cells. 2011 Jan;31(1):73-7. doi: 10.1007/s10059-011-0011-0. Epub 2010 Nov 25.
7
Emergence and pathogenicity of highly virulent Cryptococcus gattii genotypes in the northwest United States.
PLoS Pathog. 2010 Apr 22;6(4):e1000850. doi: 10.1371/journal.ppat.1000850.
9
Metabolic response to iron deficiency in Saccharomyces cerevisiae.
J Biol Chem. 2010 May 7;285(19):14823-33. doi: 10.1074/jbc.M109.091710. Epub 2010 Mar 15.
10
abc3+ encodes an iron-regulated vacuolar ABC-type transporter in Schizosaccharomyces pombe.
Eukaryot Cell. 2010 Jan;9(1):59-73. doi: 10.1128/EC.00262-09. Epub 2009 Nov 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验