Suppr超能文献

铁反应性、GATA 型转录因子 Cir1 影响新型隐球菌的交配。

The iron-responsive, GATA-type transcription factor Cir1 influences mating in Cryptococcus neoformans.

机构信息

Department of Biotechnology, Chung-Ang University, Anseong 456-756, Korea.

出版信息

Mol Cells. 2011 Jan;31(1):73-7. doi: 10.1007/s10059-011-0011-0. Epub 2010 Nov 25.

Abstract

Mating and sexual development have been associated with virulence in various fungal pathogens including Cryptococcus neoformans. This fungus is a significant pathogen of humans because it causes life-threatening cryptococcal meningitis in immunocompromised people such as AIDS patients. The virulence of C. neoformans is known to be associated with the mating type of the cells (α or a), with the α mating type being predominant among clinical isolates. However, the mechanisms by which mating and sexual development are controlled by environmental conditions and their relationship with virulence require further investigation. Cir1 is a GATA-type transcription factor that regulates the expression of genes required for utilization of essential metals such as iron and copper, and also genes required for major virulence factors including the polysaccharide capsule and melanin. Here we investigated the role of Cir1 in the mating of C. neoformans. Our results demonstrate that mutants lacking CIR1 are defective in mating, and that Cir1 contributes to copper mediated enhancement of sexual filamentation. Furthermore, we found that Cir1 influences the expression of mating pheromone genes suggesting that this protein plays a role in the early phase of sexual development on V8 mating medium.

摘要

交配和性发育与各种真菌病原体(包括新型隐球菌)的毒力有关。这种真菌是人类的重要病原体,因为它会导致免疫功能低下的人(如艾滋病患者)患上致命的 cryptococcal 脑膜炎。已知新型隐球菌的毒力与细胞的交配型(α 或 a)有关,其中α交配型在临床分离株中占优势。然而,交配和性发育受环境条件控制的机制及其与毒力的关系需要进一步研究。Cir1 是一种 GATA 型转录因子,它调节细胞对铁和铜等必需金属以及多糖荚膜和黑色素等主要毒力因子所需基因的表达。在这里,我们研究了 Cir1 在新型隐球菌交配中的作用。我们的结果表明,缺乏 CIR1 的突变体在交配中存在缺陷,Cir1 有助于铜介导的性丝状增强。此外,我们发现 Cir1 影响交配信息素基因的表达,这表明该蛋白在 V8 交配培养基上的性发育早期阶段发挥作用。

相似文献

1
The iron-responsive, GATA-type transcription factor Cir1 influences mating in Cryptococcus neoformans.
Mol Cells. 2011 Jan;31(1):73-7. doi: 10.1007/s10059-011-0011-0. Epub 2010 Nov 25.
3
A Transcriptional Regulatory Map of Iron Homeostasis Reveals a New Control Circuit for Capsule Formation in .
Genetics. 2020 Aug;215(4):1171-1189. doi: 10.1534/genetics.120.303270. Epub 2020 Jun 24.
5
Iron influences the abundance of the iron regulatory protein Cir1 in the fungal pathogen Cryptococcus neoformans.
FEBS Lett. 2011 Oct 20;585(20):3342-7. doi: 10.1016/j.febslet.2011.09.025. Epub 2011 Sep 29.
6
The interplay between electron transport chain function and iron regulatory factors influences melanin formation in .
mSphere. 2024 May 29;9(5):e0025024. doi: 10.1128/msphere.00250-24. Epub 2024 Apr 30.
7
Phenotypic characterization of , a novel mating regulator of the fungal pathogen .
Microbiol Spectr. 2024 Jul 2;12(7):e0341923. doi: 10.1128/spectrum.03419-23. Epub 2024 Jun 6.
9
Iron and fungal pathogenesis: a case study with Cryptococcus neoformans.
Cell Microbiol. 2008 Feb;10(2):277-84. doi: 10.1111/j.1462-5822.2007.01077.x. Epub 2007 Nov 27.
10
Toward an integrated model of capsule regulation in Cryptococcus neoformans.
PLoS Pathog. 2011 Dec;7(12):e1002411. doi: 10.1371/journal.ppat.1002411. Epub 2011 Dec 8.

引用本文的文献

1
Regulatory basis for reproductive flexibility in a meningitis-causing fungal pathogen.
Nat Commun. 2022 Dec 24;13(1):7938. doi: 10.1038/s41467-022-35549-y.
2
Role of the Heme Activator Protein Complex in the Sexual Development of Cryptococcus neoformans.
mSphere. 2022 Jun 29;7(3):e0017022. doi: 10.1128/msphere.00170-22. Epub 2022 May 31.
6
Transcriptome and proteome analyses reveal the regulatory networks and metabolite biosynthesis pathways during the development of .
Comput Struct Biotechnol J. 2020 Jul 25;18:2081-2094. doi: 10.1016/j.csbj.2020.07.014. eCollection 2020.
7
Unveil the transcriptional landscape at the Cryptococcus-host axis in mice and nonhuman primates.
PLoS Negl Trop Dis. 2019 Jul 22;13(7):e0007566. doi: 10.1371/journal.pntd.0007566. eCollection 2019 Jul.
8
The Role of Amino Acid Permeases and Tryptophan Biosynthesis in Cryptococcus neoformans Survival.
PLoS One. 2015 Jul 10;10(7):e0132369. doi: 10.1371/journal.pone.0132369. eCollection 2015.
9
Fungal Morphology, Iron Homeostasis, and Lipid Metabolism Regulated by a GATA Transcription Factor in Blastomyces dermatitidis.
PLoS Pathog. 2015 Jun 26;11(6):e1004959. doi: 10.1371/journal.ppat.1004959. eCollection 2015 Jun.
10
Identification of genes expressed by Cryptococcus gattii during iron deprivation.
Braz J Microbiol. 2014 Oct 9;45(3):813-20. doi: 10.1590/s1517-83822014000300008. eCollection 2014.

本文引用的文献

1
The evolution of sex: a perspective from the fungal kingdom.
Microbiol Mol Biol Rev. 2010 Jun;74(2):298-340. doi: 10.1128/MMBR.00005-10.
2
Allelic exchange of pheromones and their receptors reprograms sexual identity in Cryptococcus neoformans.
PLoS Genet. 2010 Feb 26;6(2):e1000860. doi: 10.1371/journal.pgen.1000860.
3
Orchestration of sexual reproduction and virulence by the fungal mating-type locus.
Curr Opin Microbiol. 2008 Dec;11(6):517-24. doi: 10.1016/j.mib.2008.09.014. Epub 2008 Nov 5.
4
Formulation of a defined V8 medium for induction of sexual development of Cryptococcus neoformans.
Appl Environ Microbiol. 2008 Oct;74(20):6248-53. doi: 10.1128/AEM.00970-08. Epub 2008 Sep 5.
6
Deciphering the model pathogenic fungus Cryptococcus neoformans.
Nat Rev Microbiol. 2005 Oct;3(10):753-64. doi: 10.1038/nrmicro1245.
7
Cryptococcal meningitis.
Br Med Bull. 2005 Apr 18;72:99-118. doi: 10.1093/bmb/ldh043. Print 2004.
9
Regulation of mating and pathogenic development in Ustilago maydis.
Curr Opin Microbiol. 2004 Dec;7(6):666-72. doi: 10.1016/j.mib.2004.10.006.
10
Tetrazolium overlay technique for population studies of respiration deficiency in yeast.
Science. 1957 May 10;125(3254):928-9. doi: 10.1126/science.125.3254.928.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验