Suppr超能文献

用于筛选膜蛋白二维结晶的稀疏和不完全析因矩阵。

Sparse and incomplete factorial matrices to screen membrane protein 2D crystallization.

作者信息

Lasala R, Coudray N, Abdine A, Zhang Z, Lopez-Redondo M, Kirshenbaum R, Alexopoulos J, Zolnai Z, Stokes D L, Ubarretxena-Belandia I

机构信息

New York Structural Biology Center, 89 Convent Avenue, New York, NY 10027, USA.

Department of Structural and Chemical Biology, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029, USA.

出版信息

J Struct Biol. 2015 Feb;189(2):123-34. doi: 10.1016/j.jsb.2014.11.008. Epub 2014 Dec 3.

Abstract

Electron crystallography is well suited for studying the structure of membrane proteins in their native lipid bilayer environment. This technique relies on electron cryomicroscopy of two-dimensional (2D) crystals, grown generally by reconstitution of purified membrane proteins into proteoliposomes under conditions favoring the formation of well-ordered lattices. Growing these crystals presents one of the major hurdles in the application of this technique. To identify conditions favoring crystallization a wide range of factors that can lead to a vast matrix of possible reagent combinations must be screened. However, in 2D crystallization these factors have traditionally been surveyed in a relatively limited fashion. To address this problem we carried out a detailed analysis of published 2D crystallization conditions for 12 β-barrel and 138 α-helical membrane proteins. From this analysis we identified the most successful conditions and applied them in the design of new sparse and incomplete factorial matrices to screen membrane protein 2D crystallization. Using these matrices we have run 19 crystallization screens for 16 different membrane proteins totaling over 1300 individual crystallization conditions. Six membrane proteins have yielded diffracting 2D crystals suitable for structure determination, indicating that these new matrices show promise to accelerate the success rate of membrane protein 2D crystallization.

摘要

电子晶体学非常适合在天然脂质双层环境中研究膜蛋白的结构。该技术依赖于二维(2D)晶体的电子冷冻显微镜技术,二维晶体通常是通过在有利于形成有序晶格的条件下,将纯化的膜蛋白重组到蛋白脂质体中生长而成。培养这些晶体是该技术应用中的主要障碍之一。为了确定有利于结晶的条件,必须筛选一系列可能导致大量试剂组合矩阵的因素。然而,在二维结晶中,这些因素传统上是以相对有限的方式进行研究的。为了解决这个问题,我们对已发表的12种β桶状膜蛋白和138种α螺旋膜蛋白的二维结晶条件进行了详细分析。通过该分析,我们确定了最成功的条件,并将其应用于设计新的稀疏和不完全析因矩阵,以筛选膜蛋白二维结晶。使用这些矩阵,我们对16种不同的膜蛋白进行了19次结晶筛选,总共超过1300个单独的结晶条件。六种膜蛋白产生了适合结构测定的衍射二维晶体,这表明这些新矩阵有望提高膜蛋白二维结晶的成功率。

相似文献

1
Sparse and incomplete factorial matrices to screen membrane protein 2D crystallization.
J Struct Biol. 2015 Feb;189(2):123-34. doi: 10.1016/j.jsb.2014.11.008. Epub 2014 Dec 3.
2
An automated pipeline to screen membrane protein 2D crystallization.
J Struct Funct Genomics. 2010 Jun;11(2):155-66. doi: 10.1007/s10969-010-9088-5. Epub 2010 Mar 27.
3
Two-dimensional crystallization of membrane proteins by reconstitution through dialysis.
Methods Mol Biol. 2013;955:31-58. doi: 10.1007/978-1-62703-176-9_3.
4
Use of detergents in two-dimensional crystallization of membrane proteins.
Biochim Biophys Acta. 2000 Nov 23;1508(1-2):112-28. doi: 10.1016/s0005-2736(00)00307-2.
5
Inducing two-dimensional crystallization of membrane proteins by dialysis for electron crystallography.
Methods Enzymol. 2015;557:351-62. doi: 10.1016/bs.mie.2014.12.022. Epub 2015 Mar 24.
6
A high-throughput strategy to screen 2D crystallization trials of membrane proteins.
J Struct Biol. 2007 Dec;160(3):295-304. doi: 10.1016/j.jsb.2007.09.003. Epub 2007 Sep 14.
7
Rationalizing alpha-helical membrane protein crystallization.
Protein Sci. 2008 Mar;17(3):466-72. doi: 10.1110/ps.073263108. Epub 2008 Jan 24.
8
2D crystallization of membrane proteins: rationales and examples.
J Struct Biol. 1998;121(2):162-71. doi: 10.1006/jsbi.1998.3960.
9
The CRACAM Robot: Two-Dimensional Crystallization of Membrane Protein.
Methods Mol Biol. 2017;1635:303-316. doi: 10.1007/978-1-4939-7151-0_16.
10
Helical crystallization of two example membrane proteins MsbA and the Ca(2+)-ATPase.
Methods Enzymol. 2010;483:143-59. doi: 10.1016/S0076-6879(10)83007-1.

引用本文的文献

1
A novel small molecule chaperone of rod opsin and its potential therapy for retinal degeneration.
Nat Commun. 2018 May 17;9(1):1976. doi: 10.1038/s41467-018-04261-1.
2
Photocyclic behavior of rhodopsin induced by an atypical isomerization mechanism.
Proc Natl Acad Sci U S A. 2017 Mar 28;114(13):E2608-E2615. doi: 10.1073/pnas.1617446114. Epub 2017 Mar 13.
3
Structure of the SLC4 transporter Bor1p in an inward-facing conformation.
Protein Sci. 2017 Jan;26(1):130-145. doi: 10.1002/pro.3061. Epub 2016 Oct 21.
4
Deducing the symmetry of helical assemblies: Applications to membrane proteins.
J Struct Biol. 2016 Aug;195(2):167-178. doi: 10.1016/j.jsb.2016.05.011. Epub 2016 May 30.
5
Protein crystallization screens developed at the MRC Laboratory of Molecular Biology.
Drug Discov Today. 2016 May;21(5):819-25. doi: 10.1016/j.drudis.2016.03.008. Epub 2016 Mar 24.
6
Automated data collection in single particle electron microscopy.
Microscopy (Oxf). 2016 Feb;65(1):43-56. doi: 10.1093/jmicro/dfv369. Epub 2015 Dec 15.
7
In situ X-ray data collection and structure phasing of protein crystals at Structural Biology Center 19-ID.
J Synchrotron Radiat. 2015 Nov;22(6):1386-95. doi: 10.1107/S1600577515016598. Epub 2015 Oct 15.
8
Two-Dimensional Crystallization Procedure, from Protein Expression to Sample Preparation.
Biomed Res Int. 2015;2015:693869. doi: 10.1155/2015/693869. Epub 2015 Aug 27.

本文引用的文献

1
Molecular imprinting as a signal-activation mechanism of the viral RNA sensor RIG-I.
Mol Cell. 2014 Aug 21;55(4):511-23. doi: 10.1016/j.molcel.2014.06.010. Epub 2014 Jul 10.
2
2dx_automator: implementation of a semiautomatic high-throughput high-resolution cryo-electron crystallography pipeline.
J Struct Biol. 2014 May;186(2):302-7. doi: 10.1016/j.jsb.2014.03.016. Epub 2014 Mar 28.
3
Structure of the TRPV1 ion channel determined by electron cryo-microscopy.
Nature. 2013 Dec 5;504(7478):107-12. doi: 10.1038/nature12822.
4
Growth of large and highly ordered 2D crystals of a K⁺ channel, structural role of lipidic environment.
Biophys J. 2013 Jul 16;105(2):398-408. doi: 10.1016/j.bpj.2013.05.054.
6
Membrane protein structure determination by electron crystallography.
Curr Opin Struct Biol. 2012 Aug;22(4):520-8. doi: 10.1016/j.sbi.2012.04.003. Epub 2012 May 8.
7
Real-space processing of helical filaments in SPARX.
J Struct Biol. 2012 Feb;177(2):302-13. doi: 10.1016/j.jsb.2011.12.020. Epub 2012 Jan 11.
8
Reconstitution of water channel function and 2D-crystallization of human aquaporin 8.
Biochim Biophys Acta. 2012 Mar;1818(3):839-50. doi: 10.1016/j.bbamem.2011.12.006. Epub 2011 Dec 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验