Lasala R, Coudray N, Abdine A, Zhang Z, Lopez-Redondo M, Kirshenbaum R, Alexopoulos J, Zolnai Z, Stokes D L, Ubarretxena-Belandia I
New York Structural Biology Center, 89 Convent Avenue, New York, NY 10027, USA.
Department of Structural and Chemical Biology, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029, USA.
J Struct Biol. 2015 Feb;189(2):123-34. doi: 10.1016/j.jsb.2014.11.008. Epub 2014 Dec 3.
Electron crystallography is well suited for studying the structure of membrane proteins in their native lipid bilayer environment. This technique relies on electron cryomicroscopy of two-dimensional (2D) crystals, grown generally by reconstitution of purified membrane proteins into proteoliposomes under conditions favoring the formation of well-ordered lattices. Growing these crystals presents one of the major hurdles in the application of this technique. To identify conditions favoring crystallization a wide range of factors that can lead to a vast matrix of possible reagent combinations must be screened. However, in 2D crystallization these factors have traditionally been surveyed in a relatively limited fashion. To address this problem we carried out a detailed analysis of published 2D crystallization conditions for 12 β-barrel and 138 α-helical membrane proteins. From this analysis we identified the most successful conditions and applied them in the design of new sparse and incomplete factorial matrices to screen membrane protein 2D crystallization. Using these matrices we have run 19 crystallization screens for 16 different membrane proteins totaling over 1300 individual crystallization conditions. Six membrane proteins have yielded diffracting 2D crystals suitable for structure determination, indicating that these new matrices show promise to accelerate the success rate of membrane protein 2D crystallization.
电子晶体学非常适合在天然脂质双层环境中研究膜蛋白的结构。该技术依赖于二维(2D)晶体的电子冷冻显微镜技术,二维晶体通常是通过在有利于形成有序晶格的条件下,将纯化的膜蛋白重组到蛋白脂质体中生长而成。培养这些晶体是该技术应用中的主要障碍之一。为了确定有利于结晶的条件,必须筛选一系列可能导致大量试剂组合矩阵的因素。然而,在二维结晶中,这些因素传统上是以相对有限的方式进行研究的。为了解决这个问题,我们对已发表的12种β桶状膜蛋白和138种α螺旋膜蛋白的二维结晶条件进行了详细分析。通过该分析,我们确定了最成功的条件,并将其应用于设计新的稀疏和不完全析因矩阵,以筛选膜蛋白二维结晶。使用这些矩阵,我们对16种不同的膜蛋白进行了19次结晶筛选,总共超过1300个单独的结晶条件。六种膜蛋白产生了适合结构测定的衍射二维晶体,这表明这些新矩阵有望提高膜蛋白二维结晶的成功率。