Suppr超能文献

一种用于筛选膜蛋白二维结晶的自动化流程。

An automated pipeline to screen membrane protein 2D crystallization.

作者信息

Kim Changki, Vink Martin, Hu Minghui, Love James, Stokes David L, Ubarretxena-Belandia Iban

机构信息

The New York Structural Biology Center, 89 Convent Avenue, New York, NY 10027, USA.

出版信息

J Struct Funct Genomics. 2010 Jun;11(2):155-66. doi: 10.1007/s10969-010-9088-5. Epub 2010 Mar 27.

Abstract

Electron crystallography relies on electron cryomicroscopy of two-dimensional (2D) crystals and is particularly well suited for studying the structure of membrane proteins in their native lipid bilayer environment. To obtain 2D crystals from purified membrane proteins, the detergent in a protein-lipid-detergent ternary mixture must be removed, generally by dialysis, under conditions favoring reconstitution into proteoliposomes and formation of well-ordered lattices. To identify these conditions a wide range of parameters such as pH, lipid composition, lipid-to-protein ratio, ionic strength and ligands must be screened in a procedure involving four steps: crystallization, specimen preparation for electron microscopy, image acquisition, and evaluation. Traditionally, these steps have been carried out manually and, as a result, the scope of 2D crystallization trials has been limited. We have therefore developed an automated pipeline to screen the formation of 2D crystals. We employed a 96-well dialysis block for reconstitution of the target protein over a wide range of conditions designed to promote crystallization. A 96-position magnetic platform and a liquid handling robot were used to prepare negatively stained specimens in parallel. Robotic grid insertion into the electron microscope and computerized image acquisition ensures rapid evaluation of the crystallization screen. To date, 38 2D crystallization screens have been conducted for 15 different membrane proteins, totaling over 3000 individual crystallization experiments. Three of these proteins have yielded diffracting 2D crystals. Our automated pipeline outperforms traditional 2D crystallization methods in terms of throughput and reproducibility.

摘要

电子晶体学依赖于二维(2D)晶体的电子冷冻显微镜技术,特别适合于研究处于天然脂质双分子层环境中的膜蛋白结构。为了从纯化的膜蛋白中获得二维晶体,通常需要通过透析去除蛋白质 - 脂质 - 洗涤剂三元混合物中的洗涤剂,条件是有利于重组为蛋白脂质体并形成有序晶格。为了确定这些条件,必须在一个包含四个步骤的过程中筛选各种参数,如pH值、脂质组成、脂质与蛋白质的比例、离子强度和配体:结晶、电子显微镜标本制备、图像采集和评估。传统上,这些步骤都是手动进行的,因此二维结晶试验的范围受到限制。因此,我们开发了一种自动化流程来筛选二维晶体的形成。我们使用了一个96孔透析块,在旨在促进结晶的广泛条件下重组目标蛋白。使用一个96位磁性平台和一个液体处理机器人并行制备负染标本。机器人将网格插入电子显微镜并进行计算机化图像采集,确保对结晶筛选进行快速评估。迄今为止,已对15种不同的膜蛋白进行了38次二维结晶筛选,总共进行了3000多次单独的结晶实验。其中三种蛋白产生了可衍射的二维晶体。我们的自动化流程在通量和可重复性方面优于传统的二维结晶方法。

相似文献

1
An automated pipeline to screen membrane protein 2D crystallization.
J Struct Funct Genomics. 2010 Jun;11(2):155-66. doi: 10.1007/s10969-010-9088-5. Epub 2010 Mar 27.
2
Sparse and incomplete factorial matrices to screen membrane protein 2D crystallization.
J Struct Biol. 2015 Feb;189(2):123-34. doi: 10.1016/j.jsb.2014.11.008. Epub 2014 Dec 3.
3
A high-throughput strategy to screen 2D crystallization trials of membrane proteins.
J Struct Biol. 2007 Dec;160(3):295-304. doi: 10.1016/j.jsb.2007.09.003. Epub 2007 Sep 14.
4
The CRACAM Robot: Two-Dimensional Crystallization of Membrane Protein.
Methods Mol Biol. 2017;1635:303-316. doi: 10.1007/978-1-4939-7151-0_16.
5
Inducing two-dimensional crystallization of membrane proteins by dialysis for electron crystallography.
Methods Enzymol. 2015;557:351-62. doi: 10.1016/bs.mie.2014.12.022. Epub 2015 Mar 24.
6
High-throughput methods for electron crystallography.
Methods Mol Biol. 2013;955:273-96. doi: 10.1007/978-1-62703-176-9_15.
7
2D Electron Crystallography of Membrane Protein Single-, Double-, and Multi-Layered Ordered Arrays.
Methods Mol Biol. 2021;2215:227-245. doi: 10.1007/978-1-0716-0966-8_10.
8
The 2DX robot: a membrane protein 2D crystallization Swiss Army knife.
J Struct Biol. 2010 Mar;169(3):370-8. doi: 10.1016/j.jsb.2009.12.001. Epub 2009 Dec 4.
10
Automated electron microscopy for evaluating two-dimensional crystallization of membrane proteins.
J Struct Biol. 2010 Jul;171(1):102-10. doi: 10.1016/j.jsb.2010.02.018. Epub 2010 Mar 1.

引用本文的文献

1
2
A pipeline approach to single-particle processing in RELION.
Acta Crystallogr D Struct Biol. 2017 Jun 1;73(Pt 6):496-502. doi: 10.1107/S2059798316019276. Epub 2017 Apr 20.
3
Structure of the SLC4 transporter Bor1p in an inward-facing conformation.
Protein Sci. 2017 Jan;26(1):130-145. doi: 10.1002/pro.3061. Epub 2016 Oct 21.
4
Two-Dimensional Crystallization Procedure, from Protein Expression to Sample Preparation.
Biomed Res Int. 2015;2015:693869. doi: 10.1155/2015/693869. Epub 2015 Aug 27.
5
Sparse and incomplete factorial matrices to screen membrane protein 2D crystallization.
J Struct Biol. 2015 Feb;189(2):123-34. doi: 10.1016/j.jsb.2014.11.008. Epub 2014 Dec 3.
6
Inward-facing conformation of the zinc transporter YiiP revealed by cryoelectron microscopy.
Proc Natl Acad Sci U S A. 2013 Feb 5;110(6):2140-5. doi: 10.1073/pnas.1215455110. Epub 2013 Jan 22.
7
High-throughput methods for electron crystallography.
Methods Mol Biol. 2013;955:273-96. doi: 10.1007/978-1-62703-176-9_15.
8
Membrane protein structure determination by electron crystallography.
Curr Opin Struct Biol. 2012 Aug;22(4):520-8. doi: 10.1016/j.sbi.2012.04.003. Epub 2012 May 8.
9
Electron crystallography--the waking beauty of structural biology.
Curr Opin Struct Biol. 2012 Aug;22(4):514-9. doi: 10.1016/j.sbi.2012.03.006. Epub 2012 Apr 21.
10
Advances in structural and functional analysis of membrane proteins by electron crystallography.
Structure. 2011 Oct 12;19(10):1381-93. doi: 10.1016/j.str.2011.09.001.

本文引用的文献

1
Automated electron microscopy for evaluating two-dimensional crystallization of membrane proteins.
J Struct Biol. 2010 Jul;171(1):102-10. doi: 10.1016/j.jsb.2010.02.018. Epub 2010 Mar 1.
2
The 2DX robot: a membrane protein 2D crystallization Swiss Army knife.
J Struct Biol. 2010 Mar;169(3):370-8. doi: 10.1016/j.jsb.2009.12.001. Epub 2009 Dec 4.
3
High-throughput crystallography for structural genomics.
Curr Opin Struct Biol. 2009 Oct;19(5):573-84. doi: 10.1016/j.sbi.2009.08.002. Epub 2009 Sep 16.
4
Chloride channelopathies.
Biochim Biophys Acta. 2009 Mar;1792(3):173-89. doi: 10.1016/j.bbadis.2009.02.002.
5
Caveolinopathies: from the biology of caveolin-3 to human diseases.
Eur J Hum Genet. 2010 Feb;18(2):137-45. doi: 10.1038/ejhg.2009.103. Epub 2009 Jul 8.
6
Mechanism of aquaporin-4's fast and highly selective water conduction and proton exclusion.
J Mol Biol. 2009 Jun 19;389(4):694-706. doi: 10.1016/j.jmb.2009.04.049. Epub 2009 May 3.
8
Chloride channels as drug targets.
Nat Rev Drug Discov. 2009 Feb;8(2):153-71. doi: 10.1038/nrd2780. Epub 2008 Jan 19.
10
Protein crystallization: from purified protein to diffraction-quality crystal.
Nat Methods. 2008 Feb;5(2):147-53. doi: 10.1038/nmeth.f.203.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验