Suppr超能文献

水稻叶片衰老相关的 microRNA 及其靶基因的全基因组分析

Genome-wide analysis of microRNAs and their target genes related to leaf senescence of rice.

作者信息

Xu Xiangbin, Bai Haiqi, Liu Chaoping, Chen Eryong, Chen Qifeng, Zhuang Jieyun, Shen Bo

机构信息

College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China.

State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China.

出版信息

PLoS One. 2014 Dec 5;9(12):e114313. doi: 10.1371/journal.pone.0114313. eCollection 2014.

Abstract

Grain production of rice (Oryza sativa L.) is a top priority in ensuring food security for human beings. One of the approaches to increase yield is to delay leaf senescence and to extend the available time for photosynthesis. MicroRNAs (miRNAs) are key regulators of aging and cellular senescence in eukaryotes. Here, to help understand their biological role in rice leaf senescence, we report identification of miRNAs and their putative target genes by deep sequencing of six small RNA libraries, six RNA-seq libraries and two degradome libraries from the leaves of two super hybrid rice, Nei-2-You 6 (N2Y6, age-resistant rice) and Liang-You-Pei 9 (LYP9, age-sensitive rice). In total 372 known miRNAs, 162 miRNA candidates and 1145 targets were identified. Compared with the expression of miRNAs in the leaves of LYP9, the numbers of miRNAs up-regulated and down-regulated in the leaves of N2Y6 were 47 and 30 at early stage of grain-filling, 21 and 17 at the middle stage, and 11 and 37 at the late stage, respectively. Six miRNA families, osa-miR159, osa-miR160 osa-miR164, osa-miR167, osa-miR172 and osa-miR1848, targeting the genes encoding APETALA2 (AP2), zinc finger proteins, salicylic acid-induced protein 19 (SIP19), auxin response factors (ARF) and NAC transcription factors, respectively, were found to be involved in leaf senescence through phytohormone signaling pathways. These results provided valuable information for understanding the miRNA-mediated leaf senescence of rice, and offered an important foundation for rice breeding.

摘要

水稻(Oryza sativa L.)的粮食生产是确保人类粮食安全的首要任务。提高产量的方法之一是延缓叶片衰老,延长光合作用的有效时间。微小RNA(miRNA)是真核生物衰老和细胞衰老的关键调节因子。在此,为了帮助理解它们在水稻叶片衰老中的生物学作用,我们通过对两个超级杂交水稻内-2-优6号(N2Y6,抗早衰水稻)和两优培九(LYP9,早衰敏感水稻)叶片的六个小RNA文库、六个RNA测序文库和两个降解组文库进行深度测序,报告了miRNA及其假定靶基因的鉴定结果。总共鉴定出372个已知miRNA、162个miRNA候选物和1145个靶标。与LYP9叶片中miRNA的表达相比,在灌浆早期,N2Y6叶片中上调和下调的miRNA数量分别为47个和30个;在中期分别为21个和17个;在后期分别为11个和37个。发现分别靶向编码APETALA2(AP2)、锌指蛋白、水杨酸诱导蛋白19(SIP19)、生长素响应因子(ARF)和NAC转录因子的基因的六个miRNA家族,即osa-miR159、osa-miR160、osa-miR164、osa-miR167、osa-miR172和osa-miR1848,通过植物激素信号通路参与叶片衰老。这些结果为理解miRNA介导的水稻叶片衰老提供了有价值的信息,并为水稻育种提供了重要基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7e41/4257594/d730d74952c7/pone.0114313.g001.jpg

相似文献

1
Genome-wide analysis of microRNAs and their target genes related to leaf senescence of rice.
PLoS One. 2014 Dec 5;9(12):e114313. doi: 10.1371/journal.pone.0114313. eCollection 2014.
7
Suppression of microRNA159 impacts multiple agronomic traits in rice (Oryza sativa L.).
BMC Plant Biol. 2017 Nov 21;17(1):215. doi: 10.1186/s12870-017-1171-7.
8
Genome-wide identification and characterization of long non-coding RNAs involved in flag leaf senescence of rice.
Plant Mol Biol. 2021 Apr;105(6):655-684. doi: 10.1007/s11103-021-01121-3. Epub 2021 Feb 11.

引用本文的文献

1
Switching action modes of miR408-5p mediates auxin signaling in rice.
Nat Commun. 2024 Mar 21;15(1):2525. doi: 10.1038/s41467-024-46765-z.
2
Epigenetic control of plant senescence and cell death and its application in crop improvement.
Front Plant Sci. 2023 Oct 30;14:1258487. doi: 10.3389/fpls.2023.1258487. eCollection 2023.
3
Leaf senescence: progression, regulation, and application.
Mol Hortic. 2021 Jun 16;1(1):5. doi: 10.1186/s43897-021-00006-9.
4
Novel genes and alleles of the BTB/POZ protein family in Oryza rufipogon.
Sci Rep. 2023 Sep 19;13(1):15466. doi: 10.1038/s41598-023-41269-0.
5
A cross-species co-functional gene network underlying leaf senescence.
Hortic Res. 2022 Nov 10;10(1):uhac251. doi: 10.1093/hr/uhac251. eCollection 2023.
6
Revealing the mechanisms of the bioactive ingredients accumulation in by multiomics analyses.
Front Plant Sci. 2022 Nov 16;13:1055721. doi: 10.3389/fpls.2022.1055721. eCollection 2022.
7
Know when and how to die: gaining insights into the molecular regulation of leaf senescence.
Physiol Mol Biol Plants. 2022 Aug;28(8):1515-1534. doi: 10.1007/s12298-022-01224-1. Epub 2022 Aug 30.
10
Diverse Roles of MAX1 Homologues in Rice.
Genes (Basel). 2020 Nov 13;11(11):1348. doi: 10.3390/genes11111348.

本文引用的文献

2
Induction of senescence and identification of differentially expressed genes in tomato in response to monoterpene.
PLoS One. 2013 Sep 30;8(9):e76029. doi: 10.1371/journal.pone.0076029. eCollection 2013.
5
miR172b controls the transition to autotrophic development inhibited by ABA in Arabidopsis.
PLoS One. 2013 May 23;8(5):e64770. doi: 10.1371/journal.pone.0064770. Print 2013.
6
Regulation of leaf morphology by microRNA394 and its target LEAF CURLING RESPONSIVENESS.
Plant Cell Physiol. 2012 Jul;53(7):1283-94. doi: 10.1093/pcp/pcs080. Epub 2012 May 21.
8
Transcriptional regulation of Arabidopsis MIR168a and argonaute1 homeostasis in abscisic acid and abiotic stress responses.
Plant Physiol. 2012 Mar;158(3):1279-92. doi: 10.1104/pp.111.188789. Epub 2012 Jan 13.
9
YUCCA6 over-expression demonstrates auxin function in delaying leaf senescence in Arabidopsis thaliana.
J Exp Bot. 2011 Jul;62(11):3981-92. doi: 10.1093/jxb/err094. Epub 2011 Apr 21.
10
Transcriptome and metabolite profiling show that APETALA2a is a major regulator of tomato fruit ripening.
Plant Cell. 2011 Mar;23(3):923-41. doi: 10.1105/tpc.110.081273. Epub 2011 Mar 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验