Suppr超能文献

来自多个热力学状态的状态离散轨迹数据的统计最优分析。

Statistically optimal analysis of state-discretized trajectory data from multiple thermodynamic states.

作者信息

Wu Hao, Mey Antonia S J S, Rosta Edina, Noé Frank

机构信息

Free University of Berlin, Arnimallee 6, 14195 Berlin, Germany.

King's College London, London, SE1 1DB, United Kingdom.

出版信息

J Chem Phys. 2014 Dec 7;141(21):214106. doi: 10.1063/1.4902240.

Abstract

We propose a discrete transition-based reweighting analysis method (dTRAM) for analyzing configuration-space-discretized simulation trajectories produced at different thermodynamic states (temperatures, Hamiltonians, etc.) dTRAM provides maximum-likelihood estimates of stationary quantities (probabilities, free energies, expectation values) at any thermodynamic state. In contrast to the weighted histogram analysis method (WHAM), dTRAM does not require data to be sampled from global equilibrium, and can thus produce superior estimates for enhanced sampling data such as parallel/simulated tempering, replica exchange, umbrella sampling, or metadynamics. In addition, dTRAM provides optimal estimates of Markov state models (MSMs) from the discretized state-space trajectories at all thermodynamic states. Under suitable conditions, these MSMs can be used to calculate kinetic quantities (e.g., rates, timescales). In the limit of a single thermodynamic state, dTRAM estimates a maximum likelihood reversible MSM, while in the limit of uncorrelated sampling data, dTRAM is identical to WHAM. dTRAM is thus a generalization to both estimators.

摘要

我们提出了一种基于离散转变的重加权分析方法(dTRAM),用于分析在不同热力学状态(温度、哈密顿量等)下产生的构型空间离散模拟轨迹。dTRAM能给出任意热力学状态下稳态量(概率、自由能、期望值)的最大似然估计。与加权直方图分析方法(WHAM)不同,dTRAM不需要从全局平衡中采样数据,因此对于诸如并行/模拟回火、副本交换、伞形采样或元动力学等增强采样数据能够产生更优的估计。此外,dTRAM能从所有热力学状态下的离散状态空间轨迹中给出马尔可夫状态模型(MSM)的最优估计。在合适的条件下,这些MSM可用于计算动力学量(例如速率、时间尺度)。在单一热力学状态的极限情况下,dTRAM估计出最大似然可逆MSM,而在不相关采样数据的极限情况下,dTRAM与WHAM相同。因此,dTRAM是这两种估计器的推广。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验