Suppr超能文献

炼金术自由能计算的最佳实践 [文章v1.0]

Best Practices for Alchemical Free Energy Calculations [Article v1.0].

作者信息

Mey Antonia S J S, Allen Bryce K, Macdonald Hannah E Bruce, Chodera John D, Hahn David F, Kuhn Maximilian, Michel Julien, Mobley David L, Naden Levi N, Prasad Samarjeet, Rizzi Andrea, Scheen Jenke, Shirts Michael R, Tresadern Gary, Xu Huafeng

机构信息

EaStCHEM School of Chemistry, David Brewster Road, Joseph Black Building, The King's Buildings, Edinburgh, EH9 3FJ, UK.

Silicon Therapeutics, Boston, MA, USA.

出版信息

Living J Comput Mol Sci. 2020;2(1). doi: 10.33011/livecoms.2.1.18378.

Abstract

Alchemical free energy calculations are a useful tool for predicting free energy differences associated with the transfer of molecules from one environment to another. The hallmark of these methods is the use of "bridging" potential energy functions representing intermediate states that cannot exist as real chemical species. The data collected from these bridging alchemical thermodynamic states allows the efficient computation of transfer free energies (or differences in transfer free energies) with orders of magnitude less simulation time than simulating the transfer process directly. While these methods are highly flexible, care must be taken in avoiding common pitfalls to ensure that computed free energy differences can be robust and reproducible for the chosen force field, and that appropriate corrections are included to permit direct comparison with experimental data. In this paper, we review current best practices for several popular application domains of alchemical free energy calculations performed with equilibrium simulations, in particular relative and absolute small molecule binding free energy calculations to biomolecular targets.

摘要

炼金术自由能计算是预测分子从一种环境转移到另一种环境时相关自由能差异的有用工具。这些方法的标志是使用“桥接”势能函数来表示不能作为真实化学物种存在的中间状态。从这些桥接炼金术热力学状态收集的数据允许高效计算转移自由能(或转移自由能差异),与直接模拟转移过程相比,模拟时间减少了几个数量级。虽然这些方法具有高度灵活性,但必须注意避免常见陷阱,以确保计算出的自由能差异对于所选力场具有稳健性和可重复性,并包括适当的校正以允许与实验数据进行直接比较。在本文中,我们回顾了使用平衡模拟进行炼金术自由能计算的几个流行应用领域的当前最佳实践,特别是小分子与生物分子靶标的相对和绝对结合自由能计算。

相似文献

1
Best Practices for Alchemical Free Energy Calculations [Article v1.0].
Living J Comput Mol Sci. 2020;2(1). doi: 10.33011/livecoms.2.1.18378.
2
Alchemical Binding Free Energy Calculations in AMBER20: Advances and Best Practices for Drug Discovery.
J Chem Inf Model. 2020 Nov 23;60(11):5595-5623. doi: 10.1021/acs.jcim.0c00613. Epub 2020 Sep 16.
3
Alchemical Free Energy Calculations on Membrane-Associated Proteins.
J Chem Theory Comput. 2023 Nov 14;19(21):7437-7458. doi: 10.1021/acs.jctc.3c00365. Epub 2023 Oct 30.
4
New Soft-Core Potential Function for Molecular Dynamics Based Alchemical Free Energy Calculations.
J Chem Theory Comput. 2012 Jul 10;8(7):2373-82. doi: 10.1021/ct300220p. Epub 2012 Jun 6.
6
SAMPL7 TrimerTrip host-guest binding affinities from extensive alchemical and end-point free energy calculations.
J Comput Aided Mol Des. 2021 Jan;35(1):117-129. doi: 10.1007/s10822-020-00351-9. Epub 2020 Oct 10.
7
Reproducibility of Free Energy Calculations across Different Molecular Simulation Software Packages.
J Chem Theory Comput. 2018 Nov 13;14(11):5567-5582. doi: 10.1021/acs.jctc.8b00544. Epub 2018 Oct 22.
8
Tinker-OpenMM: Absolute and relative alchemical free energies using AMOEBA on GPUs.
J Comput Chem. 2017 Sep 5;38(23):2047-2055. doi: 10.1002/jcc.24853. Epub 2017 Jun 10.

引用本文的文献

1
alchemlyb: the simple alchemistry library.
J Open Source Softw. 2024;9(101). doi: 10.21105/joss.06934. Epub 2024 Sep 26.
3
A Structure-Based Computational Pipeline for Broad-Spectrum Antiviral Discovery.
bioRxiv. 2025 Jul 30:2025.07.29.667267. doi: 10.1101/2025.07.29.667267.
4
Machine Learning-Enhanced Calculation of Quantum-Classical Binding Free Energies.
J Chem Theory Comput. 2025 Aug 26;21(16):8182-8198. doi: 10.1021/acs.jctc.5c00388. Epub 2025 Aug 5.
5
Physics-Based Solubility Prediction for Organic Molecules.
Chem Rev. 2025 Aug 13;125(15):7057-7098. doi: 10.1021/acs.chemrev.4c00855. Epub 2025 Jul 29.
7
Quantification of the Impact of Structure Quality on Predicted Binding Free Energy Accuracy.
J Chem Inf Model. 2025 Jul 14;65(13):6927-6938. doi: 10.1021/acs.jcim.5c00947. Epub 2025 Jun 29.
8
Predicting Affinity Through Homology (PATH): Interpretable binding affinity prediction with persistent homology.
PLoS Comput Biol. 2025 Jun 27;21(6):e1013216. doi: 10.1371/journal.pcbi.1013216. eCollection 2025 Jun.
9
Active Learning FEP Using 3D-QSAR for Prioritizing Bioisosteres in Medicinal Chemistry.
ACS Med Chem Lett. 2025 Apr 29;16(6):984-990. doi: 10.1021/acsmedchemlett.4c00554. eCollection 2025 Jun 12.
10
The Quasi-Bound State as a Predictor of Relative Binding Free Energy.
J Chem Inf Model. 2025 Jun 9;65(11):5544-5552. doi: 10.1021/acs.jcim.5c00289. Epub 2025 May 20.

本文引用的文献

1
Large scale relative protein ligand binding affinities using non-equilibrium alchemy.
Chem Sci. 2019 Dec 2;11(4):1140-1152. doi: 10.1039/c9sc03754c.
2
Is Structure-Based Drug Design Ready for Selectivity Optimization?
J Chem Inf Model. 2020 Dec 28;60(12):6211-6227. doi: 10.1021/acs.jcim.0c00815. Epub 2020 Oct 29.
3
A machine learning based intramolecular potential for a flexible organic molecule.
Faraday Discuss. 2020 Dec 4;224(0):247-264. doi: 10.1039/d0fd00028k.
4
Large-Scale Assessment of Binding Free Energy Calculations in Active Drug Discovery Projects.
J Chem Inf Model. 2020 Nov 23;60(11):5457-5474. doi: 10.1021/acs.jcim.0c00900. Epub 2020 Sep 3.
5
Hybrid Alchemical Free Energy/Machine-Learning Methodology for the Computation of Hydration Free Energies.
J Chem Inf Model. 2020 Nov 23;60(11):5331-5339. doi: 10.1021/acs.jcim.0c00600. Epub 2020 Aug 4.
6
Accurate Prediction of GPCR Ligand Binding Affinity with Free Energy Perturbation.
J Chem Inf Model. 2020 Nov 23;60(11):5563-5579. doi: 10.1021/acs.jcim.0c00449. Epub 2020 Jul 6.
7
Assessment of Binding Affinity via Alchemical Free-Energy Calculations.
J Chem Inf Model. 2020 Jun 22;60(6):3120-3130. doi: 10.1021/acs.jcim.0c00165. Epub 2020 Jun 3.
8
ProtoCaller: Robust Automation of Binding Free Energy Calculations.
J Chem Inf Model. 2020 Apr 27;60(4):1917-1921. doi: 10.1021/acs.jcim.9b01158. Epub 2020 Mar 26.
9
Sampling Conformational Changes of Bound Ligands Using Nonequilibrium Candidate Monte Carlo and Molecular Dynamics.
J Chem Theory Comput. 2020 Mar 10;16(3):1854-1865. doi: 10.1021/acs.jctc.9b01066. Epub 2020 Feb 24.
10
The SAMPL6 SAMPLing challenge: assessing the reliability and efficiency of binding free energy calculations.
J Comput Aided Mol Des. 2020 May;34(5):601-633. doi: 10.1007/s10822-020-00290-5. Epub 2020 Jan 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验