Mey Antonia S J S, Allen Bryce K, Macdonald Hannah E Bruce, Chodera John D, Hahn David F, Kuhn Maximilian, Michel Julien, Mobley David L, Naden Levi N, Prasad Samarjeet, Rizzi Andrea, Scheen Jenke, Shirts Michael R, Tresadern Gary, Xu Huafeng
EaStCHEM School of Chemistry, David Brewster Road, Joseph Black Building, The King's Buildings, Edinburgh, EH9 3FJ, UK.
Silicon Therapeutics, Boston, MA, USA.
Living J Comput Mol Sci. 2020;2(1). doi: 10.33011/livecoms.2.1.18378.
Alchemical free energy calculations are a useful tool for predicting free energy differences associated with the transfer of molecules from one environment to another. The hallmark of these methods is the use of "bridging" potential energy functions representing intermediate states that cannot exist as real chemical species. The data collected from these bridging alchemical thermodynamic states allows the efficient computation of transfer free energies (or differences in transfer free energies) with orders of magnitude less simulation time than simulating the transfer process directly. While these methods are highly flexible, care must be taken in avoiding common pitfalls to ensure that computed free energy differences can be robust and reproducible for the chosen force field, and that appropriate corrections are included to permit direct comparison with experimental data. In this paper, we review current best practices for several popular application domains of alchemical free energy calculations performed with equilibrium simulations, in particular relative and absolute small molecule binding free energy calculations to biomolecular targets.
炼金术自由能计算是预测分子从一种环境转移到另一种环境时相关自由能差异的有用工具。这些方法的标志是使用“桥接”势能函数来表示不能作为真实化学物种存在的中间状态。从这些桥接炼金术热力学状态收集的数据允许高效计算转移自由能(或转移自由能差异),与直接模拟转移过程相比,模拟时间减少了几个数量级。虽然这些方法具有高度灵活性,但必须注意避免常见陷阱,以确保计算出的自由能差异对于所选力场具有稳健性和可重复性,并包括适当的校正以允许与实验数据进行直接比较。在本文中,我们回顾了使用平衡模拟进行炼金术自由能计算的几个流行应用领域的当前最佳实践,特别是小分子与生物分子靶标的相对和绝对结合自由能计算。