Suppr超能文献

使用粗粒分子模拟、马科夫状态模型和红外光谱技术确定序列依赖性 DNA 寡核苷酸杂交和解杂交机制。

Determining Sequence-Dependent DNA Oligonucleotide Hybridization and Dehybridization Mechanisms Using Coarse-Grained Molecular Simulation, Markov State Models, and Infrared Spectroscopy.

机构信息

Pritzker School of Molecular Engineering, The University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637, United States.

Department of Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United States.

出版信息

J Am Chem Soc. 2021 Oct 27;143(42):17395-17411. doi: 10.1021/jacs.1c05219. Epub 2021 Oct 13.

Abstract

A robust understanding of the sequence-dependent thermodynamics of DNA hybridization has enabled rapid advances in DNA nanotechnology. A fundamental understanding of the sequence-dependent kinetics and mechanisms of hybridization and dehybridization remains comparatively underdeveloped. In this work, we establish new understanding of the sequence-dependent hybridization/dehybridization kinetics and mechanism within a family of self-complementary pairs of 10-mer DNA oligomers by integrating coarse-grained molecular simulation, machine learning of the slow dynamical modes, data-driven inference of long-time kinetic models, and experimental temperature-jump infrared spectroscopy. For a repetitive ATATATATAT sequence, we resolve a rugged dynamical landscape comprising multiple metastable states, numerous competing hybridization/dehybridization pathways, and a spectrum of dynamical relaxations. Introduction of a G:C pair at the terminus (GATATATATC) or center (ATATGCATAT) of the sequence reduces the ruggedness of the dynamics landscape by eliminating a number of metastable states and reducing the number of competing dynamical pathways. Only by introducing a G:C pair midway between the terminus and the center to maximally disrupt the repetitive nature of the sequence (ATGATATCAT) do we recover a canonical "all-or-nothing" two-state model of hybridization/dehybridization with no intermediate metastable states. Our results establish new understanding of the dynamical richness of sequence-dependent kinetics and mechanisms of DNA hybridization/dehybridization by furnishing quantitative and predictive kinetic models of the dynamical transition network between metastable states, present a molecular basis with which to understand experimental temperature jump data, and furnish foundational design rules by which to rationally engineer the kinetics and pathways of DNA association and dissociation for DNA nanotechnology applications.

摘要

对 DNA 杂交序列依赖热力学的深入了解,推动了 DNA 纳米技术的快速发展。相比之下,对于序列依赖的杂交和去杂交动力学和机制的基本理解还相对不发达。在这项工作中,我们通过整合粗粒度分子模拟、慢动力学模式的机器学习、长时间动力学模型的数据驱动推断和实验温度跃变红外光谱,对一类自我互补的 10 -mer DNA 寡聚物的序列依赖性杂交/去杂交动力学和机制建立了新的认识。对于重复的 ATATATATAT 序列,我们解析了一个由多个亚稳态、许多竞争的杂交/去杂交途径和一系列动力学弛豫组成的崎岖动力学景观。在序列的末端(GATATATATC)或中心(ATATGCATAT)引入一个 G:C 对,通过消除多个亚稳态和减少竞争动力学途径的数量,降低了动力学景观的崎岖程度。只有在末端和中心之间的中间引入一个 G:C 对,以最大限度地破坏序列的重复性(ATGATATCAT),我们才能恢复到经典的“全有或全无”的杂交/去杂交二态模型,没有中间亚稳态。我们的研究结果通过提供亚稳态之间动力学跃迁网络的定量和预测性动力学模型,为 DNA 杂交/去杂交序列依赖性动力学和机制的动态丰富性提供了新的认识,为理解实验温度跃变数据提供了分子基础,并为合理设计 DNA 缔合和解离的动力学和途径提供了基础设计规则,以应用于 DNA 纳米技术。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1525/8554761/12a5ecc44fb4/ja1c05219_0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验