Suppr超能文献

单个纳米级细胞外血囊泡的抗原组成

Antigenic composition of single nano-sized extracellular blood vesicles.

作者信息

Arakelyan Anush, Ivanova Oxana, Vasilieva Elena, Grivel Jean-Charles, Margolis Leonid

机构信息

Program in Physical Biology, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.

Atherothrombosis Department, Moscow State University of Medicine and Dentistry, Moscow, Russia.

出版信息

Nanomedicine. 2015 Apr;11(3):489-98. doi: 10.1016/j.nano.2014.09.020. Epub 2014 Dec 3.

Abstract

Extracellular vesicles (EVs) are important in normal physiology and are altered in various pathologies. EVs produced by different cells are antigenically different. Since the majority of EVs are too small for routine flow cytometry, EV composition is studied predominantly in bulk, thus not addressing their antigenic heterogeneity. Here, we describe a nanoparticle-based technique for analyzing antigens on single nano-sized EVs. The technique consists of immuno-capturing of EVs with 15-nm magnetic nanoparticles, staining captured EVs with antibodies against their antigens, and separating them from unbound EVs and free antibodies in a magnetic field, followed by flow analysis. This technique allows us to characterize EVs populations according to their antigenic distribution, including minor EV fractions. We demonstrated that the individual blood EVs carry different sets of antigens, none being ubiquitous, and quantified their distribution. The physiological significance of antigenically different EVs and their correlation with different pathologies can now be directly addressed. From the clinical editor: This study reports a nanoparticle-based technique for analyzing antigens on single nano-sized extracellular vehicles (EV). The technique consists of immuno-capturing of EVs with 15-nm magnetic nanoparticles, followed by staining the captured EVs with antibodies and separating them via a magnetic field, followed by flow analysis. This technique enables studies of antigenic properties of individual EVs that conventionally can only be studied in bulk.

摘要

细胞外囊泡(EVs)在正常生理过程中发挥着重要作用,且在多种病理状态下会发生改变。不同细胞产生的EVs在抗原性上存在差异。由于大多数EVs体积过小,无法用常规流式细胞术进行检测,因此对EVs组成的研究主要是整体分析,并未考虑其抗原异质性。在此,我们描述了一种基于纳米颗粒的技术,用于分析单个纳米级EVs上的抗原。该技术包括用15纳米的磁性纳米颗粒免疫捕获EVs,用针对其抗原的抗体对捕获的EVs进行染色,并在磁场中将其与未结合的EVs和游离抗体分离,随后进行流式分析。这项技术使我们能够根据抗原分布来表征EVs群体,包括少量的EVs组分。我们证明了单个血液中的EVs携带不同的抗原组合,没有一种抗原是普遍存在的,并对其分布进行了量化。现在可以直接探讨抗原性不同的EVs的生理意义及其与不同病理状态的相关性。临床编辑评论:本研究报告了一种基于纳米颗粒的技术,用于分析单个纳米级细胞外囊泡(EV)上的抗原。该技术包括用15纳米的磁性纳米颗粒免疫捕获EVs,随后用抗体对捕获的EVs进行染色,并通过磁场将其分离,然后进行流式分析。这项技术能够研究单个EVs的抗原特性,而这些特性传统上只能进行整体研究。

相似文献

1
Antigenic composition of single nano-sized extracellular blood vesicles.
Nanomedicine. 2015 Apr;11(3):489-98. doi: 10.1016/j.nano.2014.09.020. Epub 2014 Dec 3.
2
3
Flow analysis of individual blood extracellular vesicles in acute coronary syndrome.
Platelets. 2017 Mar;28(2):165-173. doi: 10.1080/09537104.2016.1212002. Epub 2016 Sep 5.
4
Analysis of individual extracellular vesicles by imaging flow cytometry.
Methods Enzymol. 2020;645:55-78. doi: 10.1016/bs.mie.2020.05.013. Epub 2020 Jun 22.
5
Nanoscale flow cytometry to distinguish subpopulations of prostate extracellular vesicles in patient plasma.
Prostate. 2019 May;79(6):592-603. doi: 10.1002/pros.23764. Epub 2019 Jan 24.
6
Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes.
Proc Natl Acad Sci U S A. 2016 Feb 23;113(8):E968-77. doi: 10.1073/pnas.1521230113. Epub 2016 Feb 8.
7
Methods to Analyze EVs.
Methods Mol Biol. 2017;1545:1-20. doi: 10.1007/978-1-4939-6728-5_1.
8
Analysis of extracellular vesicle DNA at the single-vesicle level by nano-flow cytometry.
J Extracell Vesicles. 2022 Apr;11(4):e12206. doi: 10.1002/jev2.12206.
9
Extracellular vesicles from activated platelets: a semiquantitative cryo-electron microscopy and immuno-gold labeling study.
Platelets. 2017 May;28(3):263-271. doi: 10.1080/09537104.2016.1268255. Epub 2017 Jan 19.

引用本文的文献

1
Exploring the role of brain-derived extracellular vesicles in viral infections: from pathological insights to biomarker potential.
Front Cell Infect Microbiol. 2024 Jun 3;14:1423394. doi: 10.3389/fcimb.2024.1423394. eCollection 2024.
2
Red blood cell-derived materials for cancer therapy: Construction, distribution, and applications.
Mater Today Bio. 2023 Dec 15;24:100913. doi: 10.1016/j.mtbio.2023.100913. eCollection 2024 Feb.
3
Challenges and Opportunities for Extracellular Vesicles in Clinical Oncology Therapy.
Bioengineering (Basel). 2023 Mar 3;10(3):325. doi: 10.3390/bioengineering10030325.
5
Trophoblastic extracellular vesicles and viruses: Friends or foes?
Am J Reprod Immunol. 2021 Feb;85(2):e13345. doi: 10.1111/aji.13345. Epub 2020 Sep 27.
6
Extracellular Vesicles in Viral Infections of the Nervous System.
Viruses. 2020 Jun 28;12(7):700. doi: 10.3390/v12070700.
7
Macrophage-derived HIV-1 carries bioactive TGF-beta.
Sci Rep. 2019 Dec 13;9(1):19100. doi: 10.1038/s41598-019-55615-8.
8
Characterization of single microvesicles in plasma from glioblastoma patients.
Neuro Oncol. 2019 May 6;21(5):606-615. doi: 10.1093/neuonc/noy187.
9
Human cytomegalovirus-infected cells release extracellular vesicles that carry viral surface proteins.
Virology. 2018 Nov;524:97-105. doi: 10.1016/j.virol.2018.08.008. Epub 2018 Aug 27.
10
Extracellular vesicles generated by placental tissues ex vivo: A transport system for immune mediators and growth factors.
Am J Reprod Immunol. 2018 Jul;80(1):e12860. doi: 10.1111/aji.12860. Epub 2018 May 4.

本文引用的文献

1
Nanoparticle-based flow virometry for the analysis of individual virions.
J Clin Invest. 2013 Sep;123(9):3716-27. doi: 10.1172/JCI67042. Epub 2013 Aug 8.
2
GB virus C particles inhibit T cell activation via envelope E2 protein-mediated inhibition of TCR signaling.
J Immunol. 2013 Jun 15;190(12):6351-9. doi: 10.4049/jimmunol.1300589. Epub 2013 May 17.
3
CD41 expression marks myeloid-biased adult hematopoietic stem cells and increases with age.
Blood. 2013 May 30;121(22):4463-72. doi: 10.1182/blood-2012-09-457929. Epub 2013 Apr 5.
5
Vesiclepedia: a compendium for extracellular vesicles with continuous community annotation.
PLoS Biol. 2012;10(12):e1001450. doi: 10.1371/journal.pbio.1001450. Epub 2012 Dec 18.
6
Microparticles: biomarkers and beyond.
Clin Sci (Lond). 2013 Apr;124(7):423-41. doi: 10.1042/CS20120309.
8
Leukocyte- and endothelial-derived microparticles: a circulating source for fibrinolysis.
Haematologica. 2012 Dec;97(12):1864-72. doi: 10.3324/haematol.2012.066167. Epub 2012 Jun 24.
10
Differences in microparticle release in patients with acute coronary syndrome and stable angina.
Circ J. 2012;76(9):2174-82. doi: 10.1253/circj.cj-12-0068. Epub 2012 Jun 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验