Suppr超能文献

ADP1影响拟南芥中PIN形成蛋白的丰度和内吞作用。

ADP1 affects abundance and endocytosis of PIN-FORMED proteins in Arabidopsis.

作者信息

Li Jieru, Li Ruixi, Jiang Zhaoyun, Gu Hongya, Qu Li-Jia

机构信息

a State Key Laboratory of Protein and Plant Gene Research; Peking-Yale Joint Research Center for Plant Molecular Genetics and AgroBiotechnology; Peking-Tsinghua Center for Life Sciences; College of Life Sciences ; Peking University ; Beijing , People's Republic of China.

出版信息

Plant Signal Behav. 2015;10(1):e973811. doi: 10.4161/15592324.2014.973811.

Abstract

Auxin, as a vital plant hormone, regulates almost every aspect of plant growth and development. We previously identified a dominant mutant, adp1-D, displaying loss of apical dominance. We also demonstrated that down-regulation of local auxin biosynthesis in adp1-D was responsible for the bushy phenotype of this mutant. Consistent with the reduction of local auxin biosynthesis, we recently discovered that protein abundance of PIN1, PIN3, and PIN7 was reduced in adp1-D without accompanying transcription level changes. Additionally, subcellular analysis revealed that over-expression of ADP1 inhibited endocytosis of PIN proteins. Taken together, we conclude that ADP1 regulates plant architecture through the fine-tuning of local auxin biosynthesis and through post-transcriptional regulation of auxin transporters.

摘要

生长素作为一种重要的植物激素,几乎调节着植物生长发育的各个方面。我们之前鉴定出一个显性突变体adp1-D,其表现出顶端优势丧失。我们还证明,adp1-D中局部生长素生物合成的下调是该突变体丛生表型的原因。与局部生长素生物合成的减少一致,我们最近发现,在adp1-D中,PIN1、PIN3和PIN7的蛋白质丰度降低,而转录水平没有变化。此外,亚细胞分析表明,ADP1的过表达抑制了PIN蛋白的内吞作用。综上所述,我们得出结论,ADP1通过微调局部生长素生物合成和对生长素转运蛋白的转录后调控来调节植物结构。

相似文献

1
ADP1 affects abundance and endocytosis of PIN-FORMED proteins in Arabidopsis.
Plant Signal Behav. 2015;10(1):e973811. doi: 10.4161/15592324.2014.973811.
2
ADP1 affects plant architecture by regulating local auxin biosynthesis.
PLoS Genet. 2014 Jan;10(1):e1003954. doi: 10.1371/journal.pgen.1003954. Epub 2014 Jan 2.
3
ROTUNDA3 function in plant development by phosphatase 2A-mediated regulation of auxin transporter recycling.
Proc Natl Acad Sci U S A. 2016 Mar 8;113(10):2768-73. doi: 10.1073/pnas.1501343112. Epub 2016 Feb 17.
4
Arabidopsis choline transporter-like 1 (CTL1) regulates secretory trafficking of auxin transporters to control seedling growth.
PLoS Biol. 2017 Dec 28;15(12):e2004310. doi: 10.1371/journal.pbio.2004310. eCollection 2017 Dec.
5
Activation and Polarity Control of PIN-FORMED Auxin Transporters by Phosphorylation.
Trends Plant Sci. 2018 Jun;23(6):523-538. doi: 10.1016/j.tplants.2018.03.009. Epub 2018 Apr 17.
7
Flavonol-mediated stabilization of PIN efflux complexes regulates polar auxin transport.
EMBO J. 2021 Jan 4;40(1):e104416. doi: 10.15252/embj.2020104416. Epub 2020 Nov 13.
8
MODULATOR OF PIN genes control steady-state levels of Arabidopsis PIN proteins.
Plant J. 2007 Aug;51(4):537-50. doi: 10.1111/j.1365-313X.2007.03158.x. Epub 2007 Jul 25.
9
A PINOID-dependent binary switch in apical-basal PIN polar targeting directs auxin efflux.
Science. 2004 Oct 29;306(5697):862-5. doi: 10.1126/science.1100618.
10
Polar-localized NPH3-like proteins regulate polarity and endocytosis of PIN-FORMED auxin efflux carriers.
Development. 2011 May;138(10):2069-78. doi: 10.1242/dev.057745. Epub 2011 Apr 13.

引用本文的文献

本文引用的文献

1
Auxin Depletion from the Leaf Axil Conditions Competence for Axillary Meristem Formation in Arabidopsis and Tomato.
Plant Cell. 2014 May;26(5):2068-2079. doi: 10.1105/tpc.114.123059. Epub 2014 May 21.
2
The Stem Cell Niche in Leaf Axils Is Established by Auxin and Cytokinin in Arabidopsis.
Plant Cell. 2014 May;26(5):2055-2067. doi: 10.1105/tpc.114.123083. Epub 2014 May 21.
3
Sugar demand, not auxin, is the initial regulator of apical dominance.
Proc Natl Acad Sci U S A. 2014 Apr 22;111(16):6092-7. doi: 10.1073/pnas.1322045111. Epub 2014 Apr 7.
4
Strigolactones and the control of plant development: lessons from shoot branching.
Plant J. 2014 Aug;79(4):607-22. doi: 10.1111/tpj.12488. Epub 2014 Apr 15.
5
ADP1 affects plant architecture by regulating local auxin biosynthesis.
PLoS Genet. 2014 Jan;10(1):e1003954. doi: 10.1371/journal.pgen.1003954. Epub 2014 Jan 2.
6
D14-SCF(D3)-dependent degradation of D53 regulates strigolactone signalling.
Nature. 2013 Dec 19;504(7480):406-10. doi: 10.1038/nature12878. Epub 2013 Dec 11.
7
DWARF 53 acts as a repressor of strigolactone signalling in rice.
Nature. 2013 Dec 19;504(7480):401-5. doi: 10.1038/nature12870. Epub 2013 Dec 11.
8
The main auxin biosynthesis pathway in Arabidopsis.
Proc Natl Acad Sci U S A. 2011 Nov 8;108(45):18512-7. doi: 10.1073/pnas.1108434108. Epub 2011 Oct 24.
9
Conversion of tryptophan to indole-3-acetic acid by TRYPTOPHAN AMINOTRANSFERASES OF ARABIDOPSIS and YUCCAs in Arabidopsis.
Proc Natl Acad Sci U S A. 2011 Nov 8;108(45):18518-23. doi: 10.1073/pnas.1108436108. Epub 2011 Oct 24.
10
Auxin, cytokinin and the control of shoot branching.
Ann Bot. 2011 May;107(7):1203-12. doi: 10.1093/aob/mcr069. Epub 2011 Apr 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验