Suppr超能文献

通过最优组合分位数信息实现高效回归

Efficient Regressions via Optimally Combining Quantile Information.

作者信息

Zhao Zhibiao, Xiao Zhijie

机构信息

Department of Statistics, Penn State University, University Park, PA 16802.

Department of Economics, Boston College, Chestnut Hill, MA 02467.

出版信息

Econ Theory (N Y). 2014 Dec;30(6):1272-1314. doi: 10.1017/S0266466614000176.

Abstract

We develop a generally applicable framework for constructing efficient estimators of regression models via quantile regressions. The proposed method is based on optimally combining information over multiple quantiles and can be applied to a broad range of parametric and nonparametric settings. When combining information over a fixed number of quantiles, we derive an upper bound on the distance between the efficiency of the proposed estimator and the Fisher information. As the number of quantiles increases, this upper bound decreases and the asymptotic variance of the proposed estimator approaches the Cramér-Rao lower bound under appropriate conditions. In the case of non-regular statistical estimation, the proposed estimator leads to super-efficient estimation. We illustrate the proposed method for several widely used regression models. Both asymptotic theory and Monte Carlo experiments show the superior performance over existing methods.

摘要

我们开发了一个通用框架,用于通过分位数回归构建回归模型的有效估计量。所提出的方法基于对多个分位数的信息进行最优组合,并且可以应用于广泛的参数和非参数设置。在组合固定数量分位数的信息时,我们推导出了所提出估计量的效率与费舍尔信息之间距离的上界。随着分位数数量的增加,这个上界减小,并且在所提出估计量的渐近方差在适当条件下接近克拉美 - 罗下界。在非正则统计估计的情况下,所提出的估计量导致超有效估计。我们针对几个广泛使用的回归模型说明了所提出的方法。渐近理论和蒙特卡罗实验均表明其性能优于现有方法。

相似文献

1
Efficient Regressions via Optimally Combining Quantile Information.
Econ Theory (N Y). 2014 Dec;30(6):1272-1314. doi: 10.1017/S0266466614000176.
3
A new quantile estimator with weights based on a subsampling approach.
Br J Math Stat Psychol. 2020 Nov;73(3):506-521. doi: 10.1111/bmsp.12198. Epub 2020 Jan 16.
4
An Algorithm of Nonparametric Quantile Regression.
J Stat Theory Pract. 2023;17(2):32. doi: 10.1007/s42519-023-00325-8. Epub 2023 Mar 29.
5
A nonparametric approach for quantile regression.
J Stat Distrib Appl. 2018;5(1):3. doi: 10.1186/s40488-018-0084-9. Epub 2018 Jul 18.
6
A kernel nonparametric quantile estimator for right-censored competing risks data.
J Appl Stat. 2019 Jun 19;47(1):61-75. doi: 10.1080/02664763.2019.1631267. eCollection 2020.
7
On Asymptotic Efficiency of the Signal-to-Noise Estimator for Deterministic Complex Sinusoids.
Sensors (Basel). 2021 Jul 21;21(15):4950. doi: 10.3390/s21154950.
9
Nonparametric quantile estimation with correlated failure time data.
Lifetime Data Anal. 2003 Dec;9(4):357-71. doi: 10.1023/b:lida.0000012422.30514.c7.
10
Extreme quantile estimation for partial functional linear regression models with heavy-tailed distributions.
Can J Stat. 2022 Mar;50(1):267-286. doi: 10.1002/cjs.11653. Epub 2021 Aug 23.

引用本文的文献

1
Bayesian additive tree ensembles for composite quantile regressions.
Stat Comput. 2025;35(6):175. doi: 10.1007/s11222-025-10711-w. Epub 2025 Aug 26.
2
The Financial Risk Measurement EVaR Based on DTARCH Models.
Entropy (Basel). 2023 Aug 13;25(8):1204. doi: 10.3390/e25081204.
3
Inference in Functional Linear Quantile Regression.
J Multivar Anal. 2022 Jul;190. doi: 10.1016/j.jmva.2022.104985. Epub 2022 Mar 11.
4
ZERO-INFLATED QUANTILE RANK-SCORE BASED TEST (ZIQRANK) WITH APPLICATION TO SCRNA-SEQ DIFFERENTIAL GENE EXPRESSION ANALYSIS.
Ann Appl Stat. 2021 Dec;15(4):1673-1696. doi: 10.1214/21-aoas1442. Epub 2021 Dec 21.
6
Efficient Robust Estimation for Linear Models with Missing Response at Random.
Scand Stat Theory Appl. 2018 Jun;45(2):366-381. doi: 10.1111/sjos.12296. Epub 2017 Aug 30.
7
Regularized quantile regression under heterogeneous sparsity with application to quantitative genetic traits.
Comput Stat Data Anal. 2016 Mar;95:222-239. doi: 10.1016/j.csda.2015.10.007. Epub 2015 Oct 24.

本文引用的文献

1
Penalized Composite Quasi-Likelihood for Ultrahigh-Dimensional Variable Selection.
J R Stat Soc Series B Stat Methodol. 2011 Jun;73(3):325-349. doi: 10.1111/j.1467-9868.2010.00764.x.
2
Local CQR Smoothing: An Efficient and Safe Alternative to Local Polynomial Regression.
J R Stat Soc Series B Stat Methodol. 2010 Jan;72(1):49-69. doi: 10.1111/j.1467-9868.2009.00725.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验