Zhao Zhibiao, Xiao Zhijie
Department of Statistics, Penn State University, University Park, PA 16802.
Department of Economics, Boston College, Chestnut Hill, MA 02467.
Econ Theory (N Y). 2014 Dec;30(6):1272-1314. doi: 10.1017/S0266466614000176.
We develop a generally applicable framework for constructing efficient estimators of regression models via quantile regressions. The proposed method is based on optimally combining information over multiple quantiles and can be applied to a broad range of parametric and nonparametric settings. When combining information over a fixed number of quantiles, we derive an upper bound on the distance between the efficiency of the proposed estimator and the Fisher information. As the number of quantiles increases, this upper bound decreases and the asymptotic variance of the proposed estimator approaches the Cramér-Rao lower bound under appropriate conditions. In the case of non-regular statistical estimation, the proposed estimator leads to super-efficient estimation. We illustrate the proposed method for several widely used regression models. Both asymptotic theory and Monte Carlo experiments show the superior performance over existing methods.
我们开发了一个通用框架,用于通过分位数回归构建回归模型的有效估计量。所提出的方法基于对多个分位数的信息进行最优组合,并且可以应用于广泛的参数和非参数设置。在组合固定数量分位数的信息时,我们推导出了所提出估计量的效率与费舍尔信息之间距离的上界。随着分位数数量的增加,这个上界减小,并且在所提出估计量的渐近方差在适当条件下接近克拉美 - 罗下界。在非正则统计估计的情况下,所提出的估计量导致超有效估计。我们针对几个广泛使用的回归模型说明了所提出的方法。渐近理论和蒙特卡罗实验均表明其性能优于现有方法。