Suppr超能文献

函数分位数回归的极端条件分位数估计

ESTIMATION FOR EXTREME CONDITIONAL QUANTILES OF FUNCTIONAL QUANTILE REGRESSION.

作者信息

Zhu Hanbing, Zhang Riquan, Li Yehua, Yao Weixin

机构信息

East China Normal University.

University of California, Riverside.

出版信息

Stat Sin. 2022 Oct;32(4):1767-1787.

Abstract

Quantile regression as an alternative to modeling the conditional mean function provides a comprehensive picture of the relationship between a response and covariates. It is particularly attractive in applications focused on the upper or lower conditional quantiles of the response. However, conventional quantile regression estimators are often unstable at the extreme tails, owing to data sparsity, especially for heavy-tailed distributions. Assuming that the functional predictor has a linear effect on the upper quantiles of the response, we develop a novel estimator for extreme conditional quantiles using a functional composite quantile regression based on a functional principal component analysis and an extrapolation technique from extreme value theory. We establish the asymptotic normality of the proposed estimator under some regularity conditions, and compare it with other estimation methods using Monte Carlo simulations. Finally, we demonstrate the proposed method by empirically analyzing two real data sets.

摘要

分位数回归作为一种替代条件均值函数建模的方法,提供了响应变量与协变量之间关系的全面图景。在关注响应变量的上条件分位数或下条件分位数的应用中,它特别具有吸引力。然而,由于数据稀疏性,传统的分位数回归估计量在极端尾部通常不稳定,特别是对于重尾分布。假设函数型预测变量对响应变量的上分位数有线性影响,我们基于函数主成分分析和极值理论的外推技术,开发了一种使用函数复合分位数回归的极端条件分位数的新型估计量。在一些正则条件下,我们建立了所提出估计量的渐近正态性,并通过蒙特卡罗模拟将其与其他估计方法进行比较。最后,我们通过对两个真实数据集进行实证分析来展示所提出的方法。

相似文献

3
High quantile regression for extreme events.极端事件的高分位数回归
J Stat Distrib Appl. 2017;4(1):4. doi: 10.1186/s40488-017-0058-3. Epub 2017 May 3.
4
An Algorithm of Nonparametric Quantile Regression.一种非参数分位数回归算法。
J Stat Theory Pract. 2023;17(2):32. doi: 10.1007/s42519-023-00325-8. Epub 2023 Mar 29.
7
A nonparametric approach for quantile regression.一种用于分位数回归的非参数方法。
J Stat Distrib Appl. 2018;5(1):3. doi: 10.1186/s40488-018-0084-9. Epub 2018 Jul 18.
9
Nonlinear parametric quantile models.非线性参数分位数模型。
Stat Methods Med Res. 2020 Dec;29(12):3757-3769. doi: 10.1177/0962280220941159. Epub 2020 Jul 19.
10
On automatic bias reduction for extreme expectile estimation.关于极端期望分位数估计的自动偏差减少
Stat Comput. 2022;32(4):64. doi: 10.1007/s11222-022-10118-x. Epub 2022 Aug 9.

本文引用的文献

2
Classical Testing in Functional Linear Models.功能线性模型中的经典检验
J Nonparametr Stat. 2016;28(4):813-838. doi: 10.1080/10485252.2016.1231806. Epub 2016 Aug 20.
3
Fast Covariance Estimation for High-dimensional Functional Data.高维函数型数据的快速协方差估计
Stat Comput. 2016 Jan 1;26(1):409-421. doi: 10.1007/s11222-014-9485-x. Epub 2014 Jun 27.
5
Selecting the Number of Principal Components in Functional Data.功能数据中主成分数量的选择
J Am Stat Assoc. 2013 Dec 19;108(504). doi: 10.1080/01621459.2013.788980.
6
Longitudinal Penalized Functional Regression for Cognitive Outcomes on Neuronal Tract Measurements.基于神经束测量的认知结果的纵向惩罚函数回归
J R Stat Soc Ser C Appl Stat. 2012 May;61(3):453-469. doi: 10.1111/j.1467-9876.2011.01031.x. Epub 2012 Jan 5.
7
Longitudinal functional principal component analysis.纵向功能主成分分析
Electron J Stat. 2010;4:1022-1054. doi: 10.1214/10-EJS575.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验