Suppr超能文献

函数分位数回归的极端条件分位数估计

ESTIMATION FOR EXTREME CONDITIONAL QUANTILES OF FUNCTIONAL QUANTILE REGRESSION.

作者信息

Zhu Hanbing, Zhang Riquan, Li Yehua, Yao Weixin

机构信息

East China Normal University.

University of California, Riverside.

出版信息

Stat Sin. 2022 Oct;32(4):1767-1787.

Abstract

Quantile regression as an alternative to modeling the conditional mean function provides a comprehensive picture of the relationship between a response and covariates. It is particularly attractive in applications focused on the upper or lower conditional quantiles of the response. However, conventional quantile regression estimators are often unstable at the extreme tails, owing to data sparsity, especially for heavy-tailed distributions. Assuming that the functional predictor has a linear effect on the upper quantiles of the response, we develop a novel estimator for extreme conditional quantiles using a functional composite quantile regression based on a functional principal component analysis and an extrapolation technique from extreme value theory. We establish the asymptotic normality of the proposed estimator under some regularity conditions, and compare it with other estimation methods using Monte Carlo simulations. Finally, we demonstrate the proposed method by empirically analyzing two real data sets.

摘要

分位数回归作为一种替代条件均值函数建模的方法,提供了响应变量与协变量之间关系的全面图景。在关注响应变量的上条件分位数或下条件分位数的应用中,它特别具有吸引力。然而,由于数据稀疏性,传统的分位数回归估计量在极端尾部通常不稳定,特别是对于重尾分布。假设函数型预测变量对响应变量的上分位数有线性影响,我们基于函数主成分分析和极值理论的外推技术,开发了一种使用函数复合分位数回归的极端条件分位数的新型估计量。在一些正则条件下,我们建立了所提出估计量的渐近正态性,并通过蒙特卡罗模拟将其与其他估计方法进行比较。最后,我们通过对两个真实数据集进行实证分析来展示所提出的方法。

相似文献

2
Extreme quantile estimation for partial functional linear regression models with heavy-tailed distributions.
Can J Stat. 2022 Mar;50(1):267-286. doi: 10.1002/cjs.11653. Epub 2021 Aug 23.
3
High quantile regression for extreme events.
J Stat Distrib Appl. 2017;4(1):4. doi: 10.1186/s40488-017-0058-3. Epub 2017 May 3.
4
An Algorithm of Nonparametric Quantile Regression.
J Stat Theory Pract. 2023;17(2):32. doi: 10.1007/s42519-023-00325-8. Epub 2023 Mar 29.
5
A Method for Confidence Intervals of High Quantiles.
Entropy (Basel). 2021 Jan 4;23(1):70. doi: 10.3390/e23010070.
7
A nonparametric approach for quantile regression.
J Stat Distrib Appl. 2018;5(1):3. doi: 10.1186/s40488-018-0084-9. Epub 2018 Jul 18.
8
Efficient Regressions via Optimally Combining Quantile Information.
Econ Theory (N Y). 2014 Dec;30(6):1272-1314. doi: 10.1017/S0266466614000176.
9
Nonlinear parametric quantile models.
Stat Methods Med Res. 2020 Dec;29(12):3757-3769. doi: 10.1177/0962280220941159. Epub 2020 Jul 19.
10
On automatic bias reduction for extreme expectile estimation.
Stat Comput. 2022;32(4):64. doi: 10.1007/s11222-022-10118-x. Epub 2022 Aug 9.

本文引用的文献

1
TPRM: TENSOR PARTITION REGRESSION MODELS WITH APPLICATIONS IN IMAGING BIOMARKER DETECTION.
Ann Appl Stat. 2018 Sep;12(3):1422-1450. doi: 10.1214/17-AOAS1116. Epub 2018 Sep 11.
2
Classical Testing in Functional Linear Models.
J Nonparametr Stat. 2016;28(4):813-838. doi: 10.1080/10485252.2016.1231806. Epub 2016 Aug 20.
3
Fast Covariance Estimation for High-dimensional Functional Data.
Stat Comput. 2016 Jan 1;26(1):409-421. doi: 10.1007/s11222-014-9485-x. Epub 2014 Jun 27.
4
Spatially Varying Coefficient Model for Neuroimaging Data with Jump Discontinuities.
J Am Stat Assoc. 2014 Jul;109(507):1084-1098. doi: 10.1080/01621459.2014.881742.
5
Selecting the Number of Principal Components in Functional Data.
J Am Stat Assoc. 2013 Dec 19;108(504). doi: 10.1080/01621459.2013.788980.
6
Longitudinal Penalized Functional Regression for Cognitive Outcomes on Neuronal Tract Measurements.
J R Stat Soc Ser C Appl Stat. 2012 May;61(3):453-469. doi: 10.1111/j.1467-9876.2011.01031.x. Epub 2012 Jan 5.
7
Longitudinal functional principal component analysis.
Electron J Stat. 2010;4:1022-1054. doi: 10.1214/10-EJS575.
9
Penalized functional regression analysis of white-matter tract profiles in multiple sclerosis.
Neuroimage. 2011 Jul 15;57(2):431-9. doi: 10.1016/j.neuroimage.2011.04.044. Epub 2011 Apr 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验