Suppr超能文献

用于监测摄食行为的咀嚼和吞咽传感器评估

Evaluation of Chewing and Swallowing Sensors for Monitoring Ingestive Behavior.

作者信息

Fontana Juan M, Sazonov Edward S

机构信息

Department of Electrical and Computer Engineering, The University of Alabama, 101 Houser Hall, Tuscaloosa, AL, 35487-0286, USA.

出版信息

Sens Lett. 2013 Mar;11(3):560-565. doi: 10.1166/sl.2013.2925.

Abstract

Monitoring Ingestive Behavior (MIB) of individuals is of special importance to identify and treat eating patterns associated with obesity and eating disorders. Current methods for MIB require subjects reporting every meal consumed, which is burdensome and tend to increase the reporting bias over time. This study presents an evaluation of the burden imposed by two wearable sensors for MIB during unrestricted food intake: a strain sensor to detect chewing events and a throat microphone to detect swallowing sounds. A total of 30 healthy subjects with various levels of adiposity participated in experiments involving the consumption of four meals in four different visits. A questionnaire was handled to subjects at the end of the last visit to evaluate the sensors burden in terms of the comfort levels experienced. Results showed that sensors presented high comfort levels as subjects indicated that the way they ate their meal was not considerably affected by the presence of the sensors. A statistical analysis showed that chewing sensor presented significantly higher comfort levels than the swallowing sensor. The outcomes of this study confirmed the suitability of the chewing and swallowing sensors for MIB and highlighted important aspects of comfort that should be addressed to obtain acceptable and less burdensome wearable sensors for MIB.

摘要

监测个体的摄食行为(MIB)对于识别和治疗与肥胖及饮食失调相关的饮食模式具有特殊重要性。当前用于MIB的方法要求受试者报告每餐的摄入情况,这既繁琐又容易随着时间推移增加报告偏差。本研究对两种可穿戴传感器在无限制食物摄入期间进行MIB监测时所带来的负担进行了评估:一种是用于检测咀嚼事件的应变传感器,另一种是用于检测吞咽声音的喉部麦克风。共有30名不同肥胖程度的健康受试者参与了实验,实验包括在四次不同的就诊中进食四餐。在最后一次就诊结束时,向受试者发放了一份问卷,以根据他们所体验到的舒适度来评估传感器的负担。结果表明,传感器的舒适度较高,因为受试者表示他们用餐的方式并未受到传感器存在的显著影响。统计分析表明,咀嚼传感器的舒适度明显高于吞咽传感器。本研究的结果证实了咀嚼和吞咽传感器适用于MIB,并突出了舒适度的重要方面,要获得可接受且负担较小的用于MIB的可穿戴传感器,就应解决这些方面的问题。

相似文献

1
Evaluation of Chewing and Swallowing Sensors for Monitoring Ingestive Behavior.
Sens Lett. 2013 Mar;11(3):560-565. doi: 10.1166/sl.2013.2925.
2
Non-invasive monitoring of chewing and swallowing for objective quantification of ingestive behavior.
Physiol Meas. 2008 May;29(5):525-41. doi: 10.1088/0967-3334/29/5/001. Epub 2008 Apr 22.
3
Meal Microstructure Characterization from Sensor-Based Food Intake Detection.
Front Nutr. 2017 Jul 17;4:31. doi: 10.3389/fnut.2017.00031. eCollection 2017.
5
The importance of field experiments in testing of sensors for dietary assessment and eating behavior monitoring.
Annu Int Conf IEEE Eng Med Biol Soc. 2018 Jul;2018:5759-5762. doi: 10.1109/EMBC.2018.8513623.
6
Comparison of wearable sensors for estimation of chewing strength.
IEEE Sens J. 2020 May 15;20(10):5379-5388. doi: 10.1109/jsen.2020.2968009. Epub 2020 Jan 20.
7
Automatic food intake detection based on swallowing sounds.
Biomed Signal Process Control. 2012 Nov 1;7(6):649-656. doi: 10.1016/j.bspc.2012.03.005. Epub 2012 Apr 6.
8
Design of a instrumentation module for monitoring ingestive behavior in laboratory studies.
Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:1884-7. doi: 10.1109/IEMBS.2011.6090534.
9
Energy intake estimation from counts of chews and swallows.
Appetite. 2015 Feb;85:14-21. doi: 10.1016/j.appet.2014.11.003. Epub 2014 Nov 7.
10
Detection of food intake from swallowing sequences by supervised and unsupervised methods.
Ann Biomed Eng. 2010 Aug;38(8):2766-74. doi: 10.1007/s10439-010-0019-1. Epub 2010 Mar 30.

引用本文的文献

1
Food/Non-Food Classification of Real-Life Egocentric Images in Low- and Middle-Income Countries Based on Image Tagging Features.
Front Artif Intell. 2021 Apr 1;4:644712. doi: 10.3389/frai.2021.644712. eCollection 2021.
2
"Automatic Ingestion Monitor Version 2" - A Novel Wearable Device for Automatic Food Intake Detection and Passive Capture of Food Images.
IEEE J Biomed Health Inform. 2021 Feb;25(2):568-576. doi: 10.1109/JBHI.2020.2995473. Epub 2021 Feb 5.
3
Mobile Ecological Momentary Diet Assessment Methods for Behavioral Research: Systematic Review.
JMIR Mhealth Uhealth. 2018 Nov 20;6(11):e11170. doi: 10.2196/11170.
4
Automatic Measurement of Chew Count and Chewing Rate during Food Intake.
Electronics (Basel). 2016;5(4). doi: 10.3390/electronics5040062. Epub 2016 Sep 23.
6
The "Smart Dining Table": Automatic Behavioral Tracking of a Meal with a Multi-Touch-Computer.
Front Psychol. 2016 Feb 11;7:142. doi: 10.3389/fpsyg.2016.00142. eCollection 2016.
7
Energy intake estimation from counts of chews and swallows.
Appetite. 2015 Feb;85:14-21. doi: 10.1016/j.appet.2014.11.003. Epub 2014 Nov 7.
8
Automatic ingestion monitor: a novel wearable device for monitoring of ingestive behavior.
IEEE Trans Biomed Eng. 2014 Jun;61(6):1772-9. doi: 10.1109/TBME.2014.2306773.

本文引用的文献

1
Automatic food intake detection based on swallowing sounds.
Biomed Signal Process Control. 2012 Nov 1;7(6):649-656. doi: 10.1016/j.bspc.2012.03.005. Epub 2012 Apr 6.
2
A Sensor System for Automatic Detection of Food Intake Through Non-Invasive Monitoring of Chewing.
IEEE Sens J. 2012;12(5):1340-1348. doi: 10.1109/JSEN.2011.2172411.
3
Food intake monitoring: an acoustical approach to automated food intake activity detection and classification of consumed food.
Physiol Meas. 2012 Jun;33(6):1073-93. doi: 10.1088/0967-3334/33/6/1073. Epub 2012 May 24.
4
An automated methodology for levodopa-induced dyskinesia: assessment based on gyroscope and accelerometer signals.
Artif Intell Med. 2012 Jun;55(2):127-35. doi: 10.1016/j.artmed.2012.03.003. Epub 2012 Apr 7.
5
Design of a instrumentation module for monitoring ingestive behavior in laboratory studies.
Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:1884-7. doi: 10.1109/IEMBS.2011.6090534.
6
Wearable sensors and systems. From enabling technology to clinical applications.
IEEE Eng Med Biol Mag. 2010 May-Jun;29(3):25-36. doi: 10.1109/MEMB.2010.936554.
7
Detection of food intake from swallowing sequences by supervised and unsupervised methods.
Ann Biomed Eng. 2010 Aug;38(8):2766-74. doi: 10.1007/s10439-010-0019-1. Epub 2010 Mar 30.
8
A wearable electronic system for objective dietary assessment.
J Am Diet Assoc. 2010 Jan;110(1):45-7. doi: 10.1016/j.jada.2009.10.013.
9
Automatic detection of swallowing events by acoustical means for applications of monitoring of ingestive behavior.
IEEE Trans Biomed Eng. 2010 Mar;57(3):626-33. doi: 10.1109/TBME.2009.2033037. Epub 2009 Sep 29.
10
Comfort and its measurement--a literature review.
Disabil Rehabil Assist Technol. 2009 Sep;4(5):301-10. doi: 10.1080/17483100902980950.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验