Suppr超能文献

基于超弹性生物力学模型、生理数据融合和非线性优化的肿瘤生长预测

Tumor growth prediction with hyperelastic biomechanical model, physiological data fusion, and nonlinear optimization.

作者信息

Wong Ken C L, Summers Ronald M, Kebebew Electron, Yao Jianhua

出版信息

Med Image Comput Comput Assist Interv. 2014;17(Pt 2):25-32. doi: 10.1007/978-3-319-10470-6_4.

Abstract

Tumor growth prediction is usually achieved by physiological modeling and model personalization from clinical measurements. Although image-based frameworks have been proposed with promising results, different issues such as infinitesimal strain assumption, complicated optimization procedures, and lack of functional information, may limit the prediction performance. Therefore, we propose a framework which comprises a hyperelastic biomechanical model for better physiological plausibility, gradient-free nonlinear optimization for more flexible choices of models and objective functions, and physiological data fusion of structural and functional images for better subject-specificity. Experiments were performed on synthetic and clinical data to verify parameter estimation capability and prediction performance of the framework. Comparisons of using different biomechanical models and objective functions were also performed. From the experimental results on eight patient data sets, the recall, precision, and relative volume difference (RVD) between predicted and measured tumor volumes are 84.85 ± 6.15%, 87.08 ± 7.83%, and 13.81 ± 6.64% respectively.

摘要

肿瘤生长预测通常通过生理建模以及根据临床测量进行模型个性化来实现。尽管已经提出了基于图像的框架并取得了有前景的结果,但诸如无穷小应变假设、复杂的优化程序以及缺乏功能信息等不同问题,可能会限制预测性能。因此,我们提出了一个框架,该框架包括一个具有更好生理合理性的超弹性生物力学模型、用于更灵活选择模型和目标函数的无梯度非线性优化,以及用于更好的个体特异性的结构和功能图像的生理数据融合。在合成数据和临床数据上进行了实验,以验证该框架的参数估计能力和预测性能。还进行了使用不同生物力学模型和目标函数的比较。从对八个患者数据集的实验结果来看,预测肿瘤体积与测量肿瘤体积之间的召回率、精确率和相对体积差异(RVD)分别为84.85±6.15%、87.08±7.83%和13.81±6.64%。

相似文献

4
Multimodal image driven patient specific tumor growth modeling.多模态图像驱动的患者特异性肿瘤生长建模
Med Image Comput Comput Assist Interv. 2013;16(Pt 3):283-90. doi: 10.1007/978-3-642-40760-4_36.
5
Patient specific tumor growth prediction using multimodal images.基于多模态影像的个体化肿瘤生长预测。
Med Image Anal. 2014 Apr;18(3):555-66. doi: 10.1016/j.media.2014.02.005. Epub 2014 Feb 20.
9
Similarity guided feature labeling for lesion detection.用于病变检测的相似性引导特征标记
Med Image Comput Comput Assist Interv. 2013;16(Pt 1):284-91. doi: 10.1007/978-3-642-40811-3_36.
10
Thoracic CT-PET registration using a 3D breathing model.使用三维呼吸模型进行胸部CT-PET配准
Med Image Comput Comput Assist Interv. 2007;10(Pt 1):626-33. doi: 10.1007/978-3-540-75757-3_76.

本文引用的文献

1
Multimodal image driven patient specific tumor growth modeling.多模态图像驱动的患者特异性肿瘤生长建模
Med Image Comput Comput Assist Interv. 2013;16(Pt 3):283-90. doi: 10.1007/978-3-642-40760-4_36.
7
A general model for ontogenetic growth.个体发育生长的通用模型。
Nature. 2001 Oct 11;413(6856):628-31. doi: 10.1038/35098076.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验