Zhu Xiaofeng, Suk Heung-Il, Shen Dinggang
Med Image Comput Comput Assist Interv. 2014;17(Pt 2):162-9. doi: 10.1007/978-3-319-10470-6_21.
Feature selection has been commonly regarded as an effective method to lessen the problem of high dimension and low sample size in medical image analysis. In this paper, we propose a novel multimodality canonical feature selection method. Unlike the conventional sparse Multi-Task Learning (MTL) based feature selection method that mostly considered only the relationship between target response variables, we further consider the correlations between features of different modalities by projecting them into a canonical space determined by canonical correlation analysis. We call the projections as canonical representations. By setting the canonical representations as regressors in a sparse least square regression framework and by further penalizing the objective function with a new canonical regularizer on the weight coefficient matrix, we formulate a multi-modality canonical feature selection method. With the help of the canonical information of canonical representations and also a canonical regularizer, the proposed method selects canonical-cross-modality features that are useful for the tasks of clinical scores regression and multi-class disease identification. In our experiments on the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset, we combine Magnetic Resonance Imaging (MRI) and Positron Emission Tomography (PET) images to jointly predict clinical scores of Alzheimer's Disease Assessment Scale-Cognitive subscale (ADAS-Cog) and Mini-Mental State Examination (MMSE) and also identify multiclass disease status for Alzheimer's disease diagnosis.
特征选择通常被视为一种有效的方法,可用于减轻医学图像分析中高维度和低样本量的问题。在本文中,我们提出了一种新颖的多模态典型特征选择方法。与传统的基于稀疏多任务学习(MTL)的特征选择方法不同,后者大多只考虑目标响应变量之间的关系,我们通过将不同模态的特征投影到由典型相关分析确定的典型空间中,进一步考虑了不同模态特征之间的相关性。我们将这些投影称为典型表示。通过在稀疏最小二乘回归框架中将典型表示设置为回归变量,并通过用一个新的典型正则化器对权重系数矩阵的目标函数进行进一步惩罚,我们制定了一种多模态典型特征选择方法。借助典型表示的典型信息以及一个典型正则化器,该方法选择了对临床评分回归和多类疾病识别任务有用的典型跨模态特征。在我们对阿尔茨海默病神经影像倡议(ADNI)数据集的实验中,我们结合磁共振成像(MRI)和正电子发射断层扫描(PET)图像,共同预测阿尔茨海默病评估量表 - 认知子量表(ADAS - Cog)和简易精神状态检查表(MMSE)的临床评分,并识别用于阿尔茨海默病诊断的多类疾病状态。