Suppr超能文献

多模态多任务学习在阿尔茨海默病中用于联合预测多个回归和分类变量。

Multi-modal multi-task learning for joint prediction of multiple regression and classification variables in Alzheimer's disease.

机构信息

Department of Radiology and BRIC, University of North Carolina at Chapel Hill, NC 27599, USA.

出版信息

Neuroimage. 2012 Jan 16;59(2):895-907. doi: 10.1016/j.neuroimage.2011.09.069. Epub 2011 Oct 4.

Abstract

Many machine learning and pattern classification methods have been applied to the diagnosis of Alzheimer's disease (AD) and its prodromal stage, i.e., mild cognitive impairment (MCI). Recently, rather than predicting categorical variables as in classification, several pattern regression methods have also been used to estimate continuous clinical variables from brain images. However, most existing regression methods focus on estimating multiple clinical variables separately and thus cannot utilize the intrinsic useful correlation information among different clinical variables. On the other hand, in those regression methods, only a single modality of data (usually only the structural MRI) is often used, without considering the complementary information that can be provided by different modalities. In this paper, we propose a general methodology, namely multi-modal multi-task (M3T) learning, to jointly predict multiple variables from multi-modal data. Here, the variables include not only the clinical variables used for regression but also the categorical variable used for classification, with different tasks corresponding to prediction of different variables. Specifically, our method contains two key components, i.e., (1) a multi-task feature selection which selects the common subset of relevant features for multiple variables from each modality, and (2) a multi-modal support vector machine which fuses the above-selected features from all modalities to predict multiple (regression and classification) variables. To validate our method, we perform two sets of experiments on ADNI baseline MRI, FDG-PET, and cerebrospinal fluid (CSF) data from 45 AD patients, 91 MCI patients, and 50 healthy controls (HC). In the first set of experiments, we estimate two clinical variables such as Mini Mental State Examination (MMSE) and Alzheimer's Disease Assessment Scale-Cognitive Subscale (ADAS-Cog), as well as one categorical variable (with value of 'AD', 'MCI' or 'HC'), from the baseline MRI, FDG-PET, and CSF data. In the second set of experiments, we predict the 2-year changes of MMSE and ADAS-Cog scores and also the conversion of MCI to AD from the baseline MRI, FDG-PET, and CSF data. The results on both sets of experiments demonstrate that our proposed M3T learning scheme can achieve better performance on both regression and classification tasks than the conventional learning methods.

摘要

许多机器学习和模式分类方法已被应用于阿尔茨海默病(AD)及其前驱阶段,即轻度认知障碍(MCI)的诊断。最近,除了像分类那样预测类别变量之外,还有几种模式回归方法也被用于从脑图像中估计连续的临床变量。然而,大多数现有的回归方法侧重于分别估计多个临床变量,因此无法利用不同临床变量之间的内在有用的相关信息。另一方面,在这些回归方法中,通常仅使用单一模态的数据(通常仅为结构 MRI),而不考虑不同模态可以提供的互补信息。在本文中,我们提出了一种通用方法,即多模态多任务(M3T)学习,以联合从多模态数据中预测多个变量。这里,变量不仅包括用于回归的临床变量,还包括用于分类的类别变量,不同的任务对应于不同变量的预测。具体来说,我们的方法包含两个关键组件,即(1)多任务特征选择,从每个模态中为多个变量选择相关特征的公共子集,以及(2)多模态支持向量机,将来自所有模态的上述选择的特征融合在一起以预测多个(回归和分类)变量。为了验证我们的方法,我们在 ADNI 基线 MRI、FDG-PET 和脑脊液(CSF)数据上进行了两组实验,这些数据来自 45 名 AD 患者、91 名 MCI 患者和 50 名健康对照者(HC)。在第一组实验中,我们从基线 MRI、FDG-PET 和 CSF 数据中估计了两个临床变量,如 Mini Mental State Examination(MMSE)和 Alzheimer's Disease Assessment Scale-Cognitive Subscale(ADAS-Cog),以及一个类别变量(值为'AD'、'MCI'或'HC')。在第二组实验中,我们预测了基线 MRI、FDG-PET 和 CSF 数据中 MMSE 和 ADAS-Cog 评分的 2 年变化,以及 MCI 向 AD 的转换。两组实验的结果表明,我们提出的 M3T 学习方案在回归和分类任务上都比传统学习方法具有更好的性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验